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Meta-Analysis of Correlations 
This handout is based on material from: 

Field, A. P. (2001). Meta-analysis of correlation coefficients: a Monte Carlo 
comparison of fixed- and random-effects methods. Psychological Methods, 6 (2), 
161–180. 

 

Meta-analysis is a statistical technique by which information from independent studies is 
assimilated. Traditionally, social science literatures were assimilated through discursive 
reviews. However, such reviews are subjective and prone to ‘reviewer-biases’ such as the 
selective inclusion of studies, selective weighting of certain studies, and misrepresentation of 
findings (see Wolf, 1986). The inability of the human mind to provide accurate, unbiased, 
reliable and valid summaries of research created the need to develop more objective methods. 
Meta-analysis arguably provides the first step to such objectivity (see Schmidt, 1992), 
although it too relies on subjective judgements regarding study inclusion (and so is still 
problematic because of biased selections of studies, and the omission of unpublished data—the 
file drawer problem). Since the seminal contributions of Glass (1976), Hedges and Olkin 
(1985), Rosenthal and Rubin (1978) and Hunter, Schmidt and Jackson (1982) there has been 
a meteoric increase in the use of meta-analysis. Field (2001) reports that over 2200 published 
articles using or discussing meta-analysis were published between 1981 and 2000. Of these, 
over 1400 have been published since 1995 and over 400 in the past year. Clearly, the use of 
meta-analysis is still accelerating.  

Basic Principles 

To summarise, an effect-size refers to the magnitude of effect observed in a study, be that the 
size of a relationship between variables or the degree of difference between group means. 
There are many different metrics that can be used to measure effect size: the Pearson 
product-moment correlation coefficient, r; the effect-size index, d; as well as odds ratios, risk 
rates, and risk differences. Of these, the correlation coefficient is used most often (Law, 
Schmidt & Hunter, 1994) and so is the focus of this study. Although various theorists have 
proposed variations on these metrics (for example, Glass’s ∆, Cohen’s d, and Hedges’s g are all 
estimates of δ), conceptually each metric represents the same thing: a standardized form of 
the size of the observed effect. Whether correlation coefficients or measures of differences are 
calculated is irrelevant because either metric can be converted into the other, and statistical 
analysis procedures for different metrics differ only in how the standard errors and bias 
corrections are calculated (Hedges, 1992). 

In meta-analysis, the basic principle is to calculate effect sizes for individual studies, convert 
them to a common metric, and then combine them to obtain an average effect size. Studies in 
a meta-analysis are typically weighted by the accuracy of the effect size they provide (i.e. the 
sampling precision), which is achieved by using the sample size (or a function of it) as a 
weight. Once the mean effect size has been calculated it can be expressed in terms of standard 
normal deviations (a Z score) by dividing by the standard error of the mean. A significance 
value (i.e. the probability, p, of obtaining a Z score of such magnitude by chance) can then be 
computed. Alternatively, the significance of the average effect size can be inferred from the 
boundaries of a confidence interval constructed around the mean effect size. 

Johnson, Mullen and Salas (1995) point out that meta-analysis is typically used to address 
three general issues: central tendency, variability and prediction. Central tendency relates to 
the need to find the expected magnitude of effect across many studies (from which the 
population effect size can be inferred). This need is met by using some variation on the 
average effect size, the significance of this average or the confidence interval around the 
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average. The issue of variability pertains to the difference between effect sizes across studies 
and is generally addressed using tests of the homogeneity of effect sizes. The question of 
prediction relates to the need to explain the variability in effect sizes across studies in terms of 
moderator variables. This issue is usually addressed by comparing study outcomes as a 
function of differences in characteristics that vary over all studies. As an example, differences 
in effect sizes could be moderated by the fact that some studies were carried out in the USA 
whereas others were conducted in the UK.  

Fixed versus Random Effects Models 

So far, we have seen that meta-analysis is used as a way of trying to ascertain the true effect 
sizes (i.e. the effect sizes in a population) by combining effect sizes from individual studies. 
There are two ways to conceptualise this process: fixed effects and random effects models1. 
Hedges (1992) and Hedges and Vevea (1998) explain the distinction between these models 
wonderfully. In essence, in the fixed effect conceptualisation, the effect sizes in the population 
are fixed but unknown constants. As such, the effect size in the population is assumed to be 
the same for all studies included in a meta-analysis (Hunter & Schmidt, 2001). This situation is 
called the homogenous case. The alternative possibility is that the population effect sizes vary 
randomly from study to study. In this case each study in a meta-analysis comes from a 
population that is likely to have a different effect size to any other study in the meta-analysis. 
So, population effect sizes can be thought of as being sampled from a universe of possible 
effects—a ‘superpopulation’ (Hedges, 1992, Becker, 1996). This situation is called the 
heterogeneous case. To summarise, in the random effects model studies in the meta-analysis 
are assumed to be only a sample of all possible studies that could be done on a given topic 
whereas in the fixed effect model the studies in the meta-analysis are assumed to constitute 
the entire universe of studies (Hunter & Schmidt, 2001). 

In statistical terms the main difference between these models is in the calculation of standard 
errors associated with the combined effect size. Fixed effects models use only within-study 
variability in their error term because all other ‘unknowns’ in the model are assumed not to 
affect the effect size (see Hedges, 1992; Hedges & Vevea, 1998). However, in random effects 
models it is necessary to account for the errors associated with sampling from populations that 
themselves have been sampled from a superpopulation. As such the error term contains two 
components: within-study variability and variability arising from differences between studies 
(see Hedges & Vevea, 1998). The result is that standard errors in the random-effects model 
are typically much larger than in the fixed case if effect sizes are heterogeneous and, 
therefore, significance tests of combined effects are more conservative. 

In reality the random effects model is probably more realistic than the fixed effects model on 
the majority of occasions (especially when the researcher wishes to make general conclusions 
about the research domain as a whole and not restrict their findings to the studies included in 
the meta-analysis). Despite this fact, the National Research Council (1992) reports that fixed 
effects models are the rule rather than the exception. Osburn and Callender (1992) have also 
noted that real-world data are likely to have heterogeneous population effect sizes even in the 
absence of known moderator variables (see also Schmidt and Hunter, 1999). Despite these 
observations, Hunter and Schmidt (2001) reviewed the meta-analytic studies reported in 
Psychological Bulletin (a major review journal in psychology) and found 21 studies reporting 
fixed-effects meta-analyses but none using random effects models. In addition, Field 
(submitted) has demonstrated that using fixed effects models in situations in which the 
population effect sizes are variable results in error rates ranging from 31% to 72% depending 
on the sample size used. At best, he concluded, 1 in 3 meta-analyses will make a Type I error 

                                          
1 In reality it is possible to combine fixed and random effects conceptualizations to produce a 
mixed model. For the purpose of this study the mixed model is ignored but the interested 
reader is referred to Hedges (1992). 
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(i.e. conclude that there is an effect in the population when none exists) and at worst half to 
three quarters of studies will make a similar error. 

Although fixed-effect models have attracted considerable attention  (Hedges, 1992, 1994a,b), 
as Hedges and Vevea (1998) point out, the choice of model depends largely on the type of 
inferences that the researcher wishes to make: fixed-effect models are appropriate only for 
conditional inferences (i.e. inferences that extend only to the studies included in the meta-
analysis) whereas random-effects models facilitate unconditional inferences (i.e. inferences 
that generalise beyond the studies included in the meta-analysis). For real-world data in the 
social sciences researchers typically wish to make unconditional inferences and so random-
effects models are often more appropriate.  

Over the last 20 years three methods of meta-analysis have remained popular (see Johnson, 
Mullen & Salas, 1995): the methods devised by Hedges, Olkin and colleagues, Rosenthal and 
Rubin (see Rosenthal, 1991), and Hunter and Schmidt (1990)2. Hedges and colleagues 
(Hedges & Olkin, 1985; Hedges, 1992; Hedges & Vevea, 1998) have developed both fixed- 
and random-effects models for combining effect sizes, whereas Rosenthal (1991) presents only 
a fixed-effects model, and Hunter and Schmidt present what they have labelled a random-
effects model (see Schmidt & Hunter, 1999). Although Johnson et al. (1995) overview these 
three meta-analytic techniques, they did not use the methods for correlation advocated by 
Hedges and colleagues (or use the random-effects versions) and Schmidt and Hunter (1999) 
have made subsequent observations about the correct use of their method. Therefore, an 
overview of the techniques used in the current study, with reference to the original sources, is 
included as a pedagogical source for readers unfamiliar with meta-analysis of correlation 
coefficients. 

Hedges-Olkin and Rosenthal-Rubin Method 

For combining correlation coefficients, Hedges & Olkin (1985), Hedges and Vevea (1998) and 
Rosenthal and Rubin (see Rosenthal, 1991) are in agreement about the method used. 
However, there are two differences between the treatments that Hedges and colleagues and 
Rosenthal and Rubin have given to the meta-analysis of correlations. First, Rosenthal (1991) 
does not present a random effects version of the model. Second, to estimate the overall 
significance of the mean effect size, Rosenthal and Rubin generally advocate that the 
probabilities of each effect size occurring by chance are combined (see Rosenthal, 1991; 
Rosenthal & Rubin, 1982).  

Fixed-Effects Model 

When correlation coefficients are used as the effect-size measure, Hedges and Olkin and 
Rosenthal and Rubin both advocate converting these effect sizes into a standard normal metric 
(using Fisher’s r-to-Z transformation) and then calculating a weighted average of these 
transformed scores. Fisher’s r-to-Z transformation (and the conversion back to r) is described 
in equation (1). The first step, therefore, is to use this equation to convert each correlation 
coefficient into its corresponding Z value (see Field, 1999 for an example). 
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The transformed effect sizes are then used to calculate an average in which each effect size is 
weighted. Equation (2) shows that the transformed effect size of the ith study is weighted by a 
weight for that particular study (wi). 

                                          
2 Although Hunter, Schmidt & Jackson (1982) originally developed this method, Hunter and 
Schmidt (1990) provide an updated and more comprehensive exposition of the technique.  
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Hedges and Vevea (1998) note that effect sizes based on large samples will be more precise 
than those based on small samples and so the weights should reflect the increased precision of 
large studies. In fact, the optimal weights that minimise the variance are the inverse variances 
of each study (see Hedges & Vevea, 1998, equation 2), and for correlation coefficients the 
individual variance is the inverse of the sample size minus three (see Hedges & Olkin, 1985, p. 
227 and p. 231). 
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As such, the general equation for the average effect size given in equation (2) becomes 
equation (3) for correlation coefficients (this is equation 4.16 in Rosenthal, 1991, p. 74). 
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The sampling variance of this average effect size is simply the reciprocal of the sum of weights 
(Hedges and Vevea, 1998, equation 4) and the standard error of this average effect size is 
simply the square root of the sampling variance. So, in its general form the standard error is: 

( )
∑

=
=

k

i
iw

rzSE
1

1

 (4) 

Given that for correlation coefficients the weights are simply n – 3, the standard error 
becomes: 
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Hedges and colleagues recommend that a z-score of the mean effect size be calculated by 
simply dividing the mean effect size by its standard error (see equation (6)). The probability of 
obtaining that value of Z can then be calculated using the standard normal distribution (e.g. 
Field, 2000, p. 471).  However, Rosenthal and Rubin recommend that the probability of 
obtaining the average effect size be calculated by combining the individual probability values of 
each correlation coefficient (see Rosenthal, 1991, p. 85-86, equation 4.31). This is the only 
respect in which the Rosenthal-Rubin and Hedges-Olkin fixed-effects methods differ. 
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Finally, to test the homogeneity of effect sizes across studies, the squared difference between 
the observed transformed r and the mean transformed r is used. To create a chi-square 
statistic some account has to be taken of the variance of each study and as before, for 
correlation coefficients the variance is just the sample size minus 3 (see Hedges & Vevea, 
1998, equation 7). This gives us the statistic Q in Equation (7), which has a chi-square 
distribution (Rosenthal, 1991, equation 4.15, p. 74; Hedges & Olkin, 1985, equation 16, p. 
235; Hedges & Vevea, 1998, equation 7, p. 490). 
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Random–effects model 

Rosenthal (1991) does not present a random effects version of the model previously described. 
However, Hedges and Olkin (1985) and Hedges and Vevea (1998) clearly elaborate on how a 
random-effects model can be calculated. The main difference in the random effects model is 
that the weights are calculated using a variance component that incorporated between-study 
variance in addition to the within-study variance used in the fixed-effect model. This between-
study variance is denoted by τ2 and is y added to the within-study variance. As such the 

weights for the random-effects model  are (see Hedges & Vevea, 1998, equation 13): 
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These new weights can simply be used in the same way as for the fixed-effects model to 
calculate the mean effect-size, its standard error and the z-score associated with it (by 
replacing the old weights with the new weights in equations 2, 4 and 6). 

The question arises of how the between-study variance might best be estimated. Hedges and 
Vevea (1998) provide equations for estimating the between-study variance based on the 
weighted sum of squared errors, Q (see equation (7)), the number of studies in the meta-
analysis, k, and a constant, c (see equation (9)). 
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The constant is calculated using the weights from the fixed effects model: 
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When combining correlation coefficients the weights are just n – 3 and the constant, therefore, 
becomes: 
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If, however, the estimate of between-study variance, τ2, yields a negative value then it is set 
at zero (because the variance between-studies cannot be negative). 

Finally, the estimate of homogeneity of study effect sizes is calculated in the same way as for 
the fixed-effect model. In short, the only difference in the random-effects models is that the 
weights used to calculate the average and its associated standard error now include a 
between-study component that is estimated using equation (8). 

Hunter and Schmidt Method 

Hunter and Schmidt advocate a single method (a random-effects method) based on their belief 
that fixed-effects models are inappropriate for real-world data and the type of inferences that 
researchers usually want to make (Hunter & Schmidt, 2001)3. Hunter and Schmidt’s method is 
thoroughly described by Hunter, Schmidt & Jackson (1982) and Hunter and Schmidt (1990). In 
its fullest form, this method emphasises the need to isolate and correct for sources of error 
such as sampling error and reliability of measurement variables. Although there is rarely 
enough information reported in a study to use the full Hunter and Schmidt technique, even in 
its simplest form it still differs from the method advocated by Hedges and colleagues and 
Rosenthal and Rubin. The main difference is in the use of untransformed effect-size estimates 
in calculating the weighted mean effect size. As such, central tendency is measured using the 
average correlation coefficient in which untransformed correlations are weighted by the sample 
size on which they are based.  Equation (11) shows how the mean effect size is estimated and 
it differs from equations (2) and (3) in that the weights used are simply the sample sizes on 
which each effect size is based, and each correlation coefficient is not transformed. 
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Like Hedges and colleagues’ method, the significance of the mean effect size is obtained by 
calculating a Z score by dividing the mean by its standard error.  However, the estimate of the 
standard error is different in Hunter and Schmidt’s method and there has been some confusion 
in the literature about how the standard error is calculated.  Johnson et al. (1995) reported the 
equation of the variance across studies (the frequency weighted average squared error 
reported by Hunter and Schmidt 1990, p. 100). The square root of this value should then be 
used to estimate the standard deviation (as in Equation (12)). The best estimate of the 
standard error is to divide this standard deviation of the observed correlation coefficients by 
the square root of the number of studies being compared (Osburn & Callender, 1992; Schmidt 
et al., 1988). Therefore, as Schmidt and Hunter (1999) have subsequently noted, the equation 
of the standard deviation used by Johnson et al. should be further divided by the square root 
of the number of studies being assimilated. Equations (12) and (13) show the correct version 
(according to Schmidt & Hunter, 1999) of the standard deviation of the mean and the 
calculation of the standard error. The Z score is calculated simply by dividing the mean effect 
size by the standard error of that mean (Equation (14)). 

                                          
3 In fact the equation for the mean effect size (see equation 11) implies a fixed-effects model 
because the use of ni as a weight assumes homogeneity (and indeed Hunter and Schmidt, 
1990, p. 100 assert the homogeneity assumption). However, in more recent work (Schmidt & 
Hunter, 1999; Hunter & Schmidt, in press) the authors have been quite explicit in labelling 
their model as random-effect. 
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In terms of homogeneity of effect sizes, again a chi-square statistic is calculated based on the 
sum of squared errors of the mean effect size (see p. 110-112 of Hunter and Schmidt, 1990). 
Equation (15) shows how the chi-square statistic is calculated from the sample size on which 
the correlation is based (n), the squared errors between each effect size and the mean, and 
the variance. 
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Comparison of the Methods 

There are two major differences between the methods described. The first difference is the use 
of transformed or untransformed correlation coefficients. The Fisher transformation is typically 
used to eliminate a slight bias in the untransformed correlation coefficient: the transformation 
corrects for a skew in the sampling distribution of rs that occurs as the population value of r 
becomes further from zero (see Fisher, 1928). Despite the theoretical basis for this 
transformation Hunter and Schmidt (1990) have long advocated the use of untransformed 
correlation coefficients using theoretical arguments to demonstrate biases arising from Fisher’s 
transformation (see Hunter, Schmidt & Coggin, 1996). Hunter and Schmidt (1990) note that 
‘the Fisher Z replaces a small underestimation or negative bias by a typically small 
overestimation, or positive bias, a bias that is always greater in absolute value than the bias in 
the untransformed correlation’ (p. 102, see also Hunter et al., 1996; Schmidt, Gast-Rosenberg 
and Hunter, 1980; Schmidt, Hunter & Raju, 1988; Field, 1999). 

Some empirical evidence does suggest that transforming the correlation coefficient can be 
beneficial. Silver and Dunlap (1987) claimed that meta-analysis based on Fisher transformed 
correlations is always less biased than when untransformed correlations are used. However, 
Strube (1988) noted that Silver and Dunlap had incorrectly ignored the effect of the number of 
studies in the analysis and so had based their findings on only a small number of studies. 
Strube (1988) showed that as the number of studies increased the overestimation of effect 
sizes based on Fisher transformed correlations was almost exactly equal in absolute terms to 
the underestimation of effect sizes found when untransformed rs were used. Strube’s data 
indicated that the bias in effect size estimates based on transformed correlations was less than 
the bias in those based on untransformed correlations only when 3 or less studies were 
included in the meta-analysis (and even then only when these studies had sample sizes of 20 
or less). It would be the exception that actual meta-analytic reviews would be based on such a 
small number of studies. As a final point, Hunter et al. (1996) have argued that when 
population correlations are the same for studies in the meta-analysis (the homogenous case) 
then results based on transformed correlations should be within rounding error of those based 
on untransformed values. 
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The second difference is in the equations used to estimate the standard error. If we compare 
the random-effects model described by Hedges and Vevea (1998) to Hunter and Schmidt’s, the 
estimates of standard error are quite different. Hedges and Vevea (1998) have suggested that 
Hunter and Schmidt ‘advocate the use of suboptimal weights that correspond to the fixed-
effects weights, presumably because they assume that τ2 [the between-study variance] is 
small’ (p. 493, parentheses added). Therefore, if the between-study variance is not small, the 
Hunter and Schmidt method will underestimate the standard error and hence overestimate the 
z-score associated with the mean (Hedges & Vevea, 1998). However, Hedges and Vevea’s 
(1998) estimate of the between-study variance is truncated (because negative values lead to 
the assumption that τ2 = 0), and so when there are only a small number of studies in the 
meta-analysis the estimate of between-study variance will be biased and the weights used to 
calculate the average effect size (and its significance) will be biased also. 

Johnson et al. (1995) used a single database to compare the Hedges-Olkin (fixed-effect), 
Rosenthal-Rubin and Hunter-Schmidt meta-analytic methods. By manipulating the 
characteristics of this database Johnson et al. looked at the effects of the number of studies 
compared, the mean effect size of studies, the mean number of participants per study and the 
range of effect sizes within the database. In terms of the outcomes of each meta-analysis, 
they looked at the resulting mean effect size, the significance of this effect size, homogeneity 
of effect sizes, and prediction of effect sizes by a moderator variable. Their results showed 
convergence of the methods in terms of the mean effect size and estimates of the 
heterogeneity of effect sizes. However, the significance of the mean effect size differed 
substantially across meta-analytic methods. Specifically, the Hunter and Schmidt method 
seemed to reach more conservative estimates of significance (and hence wider confidence 
intervals) than the other two methods. Johnson et al. concluded that Hunter and Schmidt’s 
method should be used only with caution. 

Johnson et al.’s study provides some of the only comparative evidence to suggest that some 
meta-analytic methods for combining correlations should be preferred over others (although 
Overton, 1998, has investigated moderator variable effects across methods); however, 
although their study clearly provided an excellent starting point at which to compare methods, 
there were some limitations. First, Schmidt and Hunter (1999) have criticised Johnson et al.’s 
work at a theoretical level claiming that the wrong estimate of the standard error of the mean 
effect size was used in their calculation of its significance. Schmidt and Hunter went on to 
show that when a corrected estimate was used, estimates of the significance of the mean 
effect size should be comparable to the Hedges and Olkin and Rosenthal and Rubin methods. 
Therefore, theoretically the methods should yield comparable results. Second, Johnson et al. 
applied Hedges and Olkin’s method for d (by first converting each correlation coefficient from r 
to d). Hedges and Olkin (and Hedges & Vevea, 1998) provide methods for directly combining 
rs (without converting to d) and so this procedure did not represent what researchers would 
actually do.  Finally, the circumstances under which the three procedures were compared were 
limited to a single database that was manipulated to achieve the desired changes in the 
independent variables of interest. This creates two concerns: (1) the conclusions drawn might 
be a product of the properties of the data set used (because, for example, adding or 
subtracting a fixed integer from each effect size allowed Johnson et al. to look at situations in 
which the mean effect size was higher or lower than in the original database; however, the 
relative strength of each effect size remained constant throughout); and (2) the data set 
assumed a fixed population effect size and so no comparisons were made between random-
effects models. A follow-up study is needed in which Monte Carlo data simulations are used to 
expand Johnson et al.’s work. 

Field (2001) did such a follow up comparing the methods of meta-analysis in both the fixed 
and homogenous case. Field’s results (based on 200,000 Monte Carlo trials) showed that the 
Hunter-Schmidt method tended to provide the most accurate estimates of the mean population 
effect size when effect sizes were heterogeneous, which is the most common case in meta-
analytic practice. In the heterogeneous case, Hedges and colleagues’ method tended to 
overestimate effect sizes by about 15-45%, whereas the Hunter-Schmidt method tended to 
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underestimate it by a smaller amount (about 5-10%), and then only when the population 
average correlation exceeded 0.5. In terms of the Type I error rate for the significance tests 
associated with these estimates Hedges and colleagues’ method did control this error rate in 
the homogenous case. The most surprising finding is that neither random-effects method 
controlled the Type I error rate in the heterogeneous case (except when a large number of 
studies were included in the meta-analysis) — although Hedges and colleagues’ method 
inflates the Type I error rate less than the Hunter-Schmidt method. Given that the National 
Research Council (1992) and others have suggested that the heterogeneous case is the rule 
rather than the exception, this implies that estimates and significance tests from meta-analytic 
studies containing less than 30 samples should be interpreted very cautiously. Even then, 
random-effects methods seem poor at detecting small population effect sizes. 
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