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A Bluffer's guide to Meta Analysis I: Correlations 

Andy Field 

Royal Holloway, University of London, 

 

Meta-analysis is an increasingly popular tool in modern statistics. Put simply, meta-

analysis is a way in which data from several different studies can be assimilated in an 

objective way. The traditional approach to literature reviews of a particular scientific 

area has been to collate findings in a subjective manner, which can often lead to bias 

representations of the literature and unjustified speculations by the reviewer.  The 

main advantage of meta-analysis is that, in theory, it provides a framework for a 

scientifically rigorous accumulation of research findings (but see Wolf, 1986 for some 

pitfalls). In summary, by doing meta-analysis we hope to obtain some idea of what 

conclusions would have been reached had the data from lots of independnet studies 

been collected in one big study. 

This article introduces various techniques for combining correlation coefficients from 

different studies (collected with different sample sizes) to produce an overall measure 

of the true relationship. Some data are presented to investigate which method is best. 

1.1. The Simple Average 

1.1.1. Theory 

The easiest way to combine correlation coefficients from different studies is to take an 

average of the coefficients. Equation 1 shows how this average is calculated. Put 

simply, you add the correlation coefficients together and then divide by the number of 

coefficients. 

n
rir ∑=  (1) 
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1.1.2. Example 

Imagine we are interested in combining the correlation coefficients from four 

independent studies. In three out of the four studies the correlation is significant. 

However, in study four no significant correlation was found and in study 2, the 

correlation coefficient was only just significant. Given the inconsistency of these 

results, it might be prudent to conduct a meta-analysis on these correlation coefficients 

to see whether the overall size of the relationship. Table 1 shows the correlation 

coefficients from the four studies, we will use these values throughout this article. 

Table 1 

 Study 1 Study 2 Study 3 Study 4 

r 0.453 0.321 0.301 0.075 

Sig. <0.001 0.049 0.033 0.722 

N 87 38 50 25 

To calculate the simple average, we add the coefficients together and divide by the 

number of coefficients (in this case 4): 

28804
0750301032104530 .r ....

n
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Cohen (1988) termed 0.10 as a small effect size, 0.30 as a medium effect size, and 0.50 as 

a large effect size. By Cohen's criteria this averaged correlation represents a medium 

effect size. This average correlation is well below three of the four observed correlation 

coefficients which demonstrates how this measure can be biased. In this example, 

study 4, in which a very small correlation coefficient was found, used only a very small 

sample, yet this coefficient is treated equally to the other studies in which larger 

samples were used. The end result is that the average correlation has been suppressed 

by one, relatively small, study. One solution to this problem is the weighted average. 

1.2. The Weighted Average 

1.2.1. Theory 

The weighted average is similar to the simple average, except that each correlation 

coefficient is 'weighted' by the sample size on which it is based. Equation 2 shows how 
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this weighted average is calculated. First, each correlation coefficient is multiplied by 

the sample size on which it is based. Then, these products are added together (this 

gives us the top half of equation 2). Finally, the total sample size is calculated by 

adding together the individual sample sizes (this is the bottom half of equation 2). 
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1.2.2. Example 

Using the same four example studies. We can replace the various components of 

equation 2 to give us: 
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The weighted average is substantially larger than the unweighted value of 0.288: this is 

because studies with larger samples are given more emphasis. A word of warning 

should be made here. That is, if there is one study (or a small minority of studies) that 

use substantially larger samples than the others, then this procedure will bias heavily 

in favour of the large sample. In this example, the weighted average is actually greater 

than three of the observed correlation coefficients and this is because the correlation 

observed in the largest sample (study 1) was much greater than the other three studies. 

If the sample size of study 1 had been even greater (say 500 rather than 87) then the 

weighted average correlation would have reached 0.417 (work it out for yourself!).  

1.3. Fisher's Transformed Correlation (Zr) 

1.3.1. Theory 1: Transforming the correlation coefficient 

As values of the correlation coefficient in the population depart from zero, the 

distribution of coefficients sampled from that population becomes skewed. In short, 

this introduces a small bias when comparing correlation coefficients from different 

studies: especially as we are always likely to compare correlation coefficients that are 

different from zero (zero correlations are unlikely to be published in journals!). Fisher 

devised a transformation of the correlation coefficient that ensures that sample 
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distributions are normal. Many authors (Rosenthal, 1991; Wolf, 1986) recommend that 

when combining correlation coefficients from different studies, these coefficients 

should first be transformed using Fisher's method. Therefore, when calculating the 

simple or weighted average of several correlation coefficients we should first transform 

each one. 

Fisher's transformation is achieved using Equation 3. Simply take your existing 

correlation coefficient and replace it in the equation. Imagine a correlation coefficient of 

0.5. This value can be transformed into Zr by first dividing the correlation coefficient 

plus one, by that same coefficient minus 1 (1.5/0.5 = 3). You then need to find the 

natural logarithm of this value. The natural Log of 3 is 1.0986 (this value can be 

obtained using the ln button on most scientific calculators). Once this value is obtained, 

simply divide it by 2. The end result for a correlation coefficient of 0.5 is, therefore, 

(1.0986/2) = 0.549. To save you the trouble of calculating Fisher's transformed r many 

statistics textbooks (such as Howell, 1997) include tables of the transformed values of r. 

These transformed values can then be used to calculate the simple average or weighted 

average. The Appendix shows SPSS syntax for this conversion also. 


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1.3.2. Theory 2: Converting the average back to a correlation coefficient 

Assuming we have transformed the correlation coefficients of interest to find the 

respective values of Zr and then calculated the average or weighted average, this 

resulting average is in transformed form ( rZ ). In other words, it is not a correlation 

coefficient. Therefore, the averaged value has to be converted back. This conversion is 

achieved by re-arranging equation 3. Equation 4 shows this re-arranged form of the 

equation in which e is the base of natural Logarithms and z is the Fisher transformed 

version of r. The Appendix shows SPSS syntax for this conversion also. 
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1.3.3. Example: Transforming r and calculating the average. 

Equation 3 can be broken down systematically to calculate the value of Zr for each 

correlation coefficient. Table 2 shows how this can be done for the four studies used in 

previous examples. Remember that to find the value of Loge you look for the ln button 

on your calculator. 

Table 2 

 Study 1 Study 2 Study 3 Study 4 

r 0.453 0.321 0.301 0.075 

1+r 1.453 1.321 1.301 1.075 

1–r 0.547 0.679 0.699 0.925 

r
r

−
+

1
1  2.656 1.946 1.861 1.162 

( )r
r

eLog −
+

1
1  0.976 0.666 0.621 0.150 

( )r
r

eLog −
+

1
1

2
1  0.488 0.333 0.311 0.075 

Once the correlation coefficients have been calculated, an average can be calculated as 

follows: 
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Alternatively, the weighted average can be calculated: 
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1.3.4. Example II: Converting the average back 

To convert the average and weighted average back into a correlation coefficient, we 

use equation 4. The average transformed value is converted back as follows: 
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Likewise, the weighted average is transformed back using the same equation: 
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These values of 0.293 and 0.348 can be compared to the earlier averages calculated 

without first transforming the correlation coefficients. In both cases, the average using 

the transformed correlation coefficients are greater. 

1.4. Which Method is Best? 

1.4.1. To weight or not to weight? 

So far I have described four different methods of obtaining combined correlation 

coefficients from several studies. However, a pertinent question is which method 

provides the best results. Hunter and Schmidt (1990) argue that it would be a very rare 

case in which an unweighted analysis proved better than a weighted one. However, 

the weighted method gives greatest weight to large studies and as such, in situations in 

which one study has a much greater sample than the others being compared, this could 

create a bias. Nevertheless, if the population correlations from which the samples were 

taken are the same then the weighted version will always be better. In addition, if 

population correlations differ by only a little then the weighted version will still be 

superior, and even when population correlations differ considerably, the weighted 

version is still better provided that the sample size does not correlate with the 

population correlation (See Hunter & Schmidt, 1990). 

1.4.2. To transform or not to transform? 

The next question is whether the Fisher transformation yields any benefit. Rosenthal 

(1994) certainly believes so. However, Hunter and Schmidt (1990) insist that the Fisher 

transformed average is lass accurate than the untransformed version. I conducted a 
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small experiment to test (under limited conditions) the accuracy of each of the four 

methods described. This work was a pilot study for a systematic Monte Carlo 

investigation of the factors influencing the various methods. Assume that the actual 

relationship of interest is a medium sized effect by Cohen's criterion (the actual 

population correlation coefficient was set at 0.347). On each occasion I combined the 

correlation coefficients arising from only four studies. Therefore, four correlation 

coefficients were combined to obtain the average, weighted average, transformed 

average and transformed weighted average. The averages based on the transformed 

correlation coefficients were then converted back to correlation coefficients (using 

equation 4). The combined sample size across studies was constant (N = 200), but the 

sample size of the four studies differed according to five set ratios. For each of these 

sample size ratio combinations, 10 random samples were taken. Therefore, 50 different 

correlation coefficients were derived for each study, which combined to make 50 of 

each type of average correlation. 

Table 3 

Average Weighted Average Sample 

Ratio Not Transformed Transformed Not Transformed Transformed 

87:38:50:25 0.358 0.365 0.348 0.355 

50:50:50:50 0.346 0.354 0.346 0.354 

60:40:60:40 0.346 0.352 0.346 0.352 

60:40:75:25 0.337 0.343 0.343 0.349 

80:20:70:30 0.354 0.369 0.349 0.358 

Total 0.348 0.357 0.347 0.354 

Table 3 shows the resulting averaged correlation coefficients for each of the five sample 

size ratios. The ratios represent the samples on which the four studies are based, so 

50:50:50:50 means that all four studies used samples of 50, whereas 60:40:60:40 means 

that studies 1 and 3 used samples of 60 whereas studies 2 and 4 used samples of 40. 
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This manipulation was to see whether small variations in relative sample sizes would 

influence the accuracy of the resulting averages. For each set of ratios there were ten 

sets of samples taken and the correlation coefficients in the table represent the averages 

of these 10 trials. The total correlation coefficients represent the correlation coefficients 

collapsed with respect to the sample size ratios. 

A three way 2 (Weighted: weighted or not) × 2 (Transformed: transformed or not) × 5 

(ratio: sample size ratios) ANOVA was conducted on the resulting coefficients. This 

analysis revealed no significant effects involving the sample size ratio manipulation. 

However, there was a significant effect of whether the averages were based on 

transformed or non-transformed correlation coefficients [F (1, 45) = 64.40, p < 0.001]. 

This showed that averages based on Fisher transformed coefficients were significantly 

larger than those based on ordinary coefficients. There was no main effect of weighting 

the average [F < 1], but there was an interaction between whether the mean was 

weighted and whether it was based on transformed values [F (1, 45) = 4.36, p < 0.05]. 

This interaction seemed to suggest that weighting the average had a benefit only when 

that average was based on transformed scores (see Figure 1). 

Bearing in mind that we know that the correlation that we are trying to estimate from 

these averages is actually 0.347, Figure 1 shows that the weighted average 

(untransformed) provides the correct value, on average. All other averages over-

estimate the correlation. The significant over-estimation caused by using Fisher-

transformed coefficients supports Hunter and Schmidt's (1990) work. There are 

limitations to this simulation study, for one thing, sample sizes although varying were 

relatively similar throughout (which probably accounts for the absence of an effect of 

weighting the average). In addition, these results are based on relatively few trials, on a 

situation in which only four coefficients are averaged, and on only one population 

coefficient (what would happen if the correlation in the population was large or 

small?). Nevertheless, it supports other work that suggests that the Fisher 

transformation is un-necessary. However, for the reasons suggested by Hunter and 

Schmidt (1990) a weighted average is preferred. 
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Figure 1 

 

1.5. Summary 

Four methods of combining correlation coefficients from several studies are described. 

Of the four, the weighted average appears best for theoretical reasons and data 

presented supports the previous suggestion that Fisher-transformed averages 

significantly overestimate the actual correlation. 

1.6. Appendix 
SPSS syntax to transform a column of correlation coefficients (labelled r) 
into a column of Fisher-transformed coefficients (labelled z): 
COMPUTE z = 0.5 * (ln((1 + r)/(1 - r))) . 
EXECUTE . 
 
SPSS syntax to transform a column of Fisher-transformed coefficients 
(labelled z) into a column of correlation coefficients (labelled r):  
COMPUTE r = ((EXP(z/0.5))-1)/(1 + EXP(z/0.5)). 
EXECUTE. 
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