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1. Weight matters 
This paper deals with weighting, its function in statistical analysis, and its use in SPSS.2 A typical 
problem involving weighting can be seen in the following example. 
A survey has been carried out on the population of a certain region of the United States, to 
estimate voting preferences in the region for an upcoming national election. A sample of 1000 
voters, including 500 African Americans (AA) and 500 Non African Americans (NAA) has been 
drawn at random, and the result was that 60% of the sample announced they would vote 
Democratic. The pollster in charge hastily made the prediction that Democrats would win by a 
near landslide margin. As it turned out, this was a wrong prediction: 55% of voters chose the 
Republican candidate, and just 45% cast the Democratic ballot.  
What went wrong with the pollster's prediction is that it failed to take into account the fact that 
blacks were over-represented in the sample, and at the same time they were very strongly 
Democratic (about 80%) while whites and other non-blacks were under-sampled and they were 
also more evenly divided between the two parties. The prediction of 60% Democratic was based, 
in fact, on 40% of the NAA sample and 80% of the AA intending to vote for the Democratic 
Party. As the same number of people from each ethnic group was interviewed, the overall simple 
average was 60% Democratic. But in fact, blacks were not even close to represent 50% of the 
population. Their share in the region was about 18% of the population. So in fact giving each 
portion of the sample its proper demographic weight (82% non-blacks, 18% blacks) gives a very 
different prediction: 
 

(0.82 x 40) + (0.18 x 80) = 32.8+14.4=47.2% Democratic 
 

This is not far from the actual result (45% Democratic). If the pollster knew about weighting a 
better prediction could have been produced. 
The error pertained only to the overall vote prediction. The sample results by race, reporting the 
strong Democratic preferences of AA (80%) and the Republican inclinations of 60% of non-
blacks in the population of that region, were not tainted by any problem, and they were not 
expected to be, because they were based on a random sample of individuals belonging to each 
group. Only the overall percentage, resulting from the combination or aggregation of both groups, 
suffered from the gross over-sampling of African Americans in the sample. In fact, weighting 
appears as an issue whenever several entities (in this case people) are aggregated into a general 
figure like an overall percentage. Giving some parts of the sample more weight than they are 
entitled to may in that situation entail errors of estimation.  
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am also grateful to several members of the SPSSX-L forum, for asking questions about the use of weights 
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 2

2. Weighting cases and weighting variables 
A data set is usually composed of cases for which several variables are predicated. Thus the data 
set is a rectangular array of n cases by k variables. Statistical analyses usually proceed by 
aggregating cases and/or variables in some meaningful way. For instance, one variable can be 
aggregated across cases to yield a total or a mean or average.3 Also, several variables can be 
aggregated within each case to yield an overall score or scale, for instance an average grade for 
each student from the grades obtained in different school courses. 
One common situation is having groups of cases of different size. For instance, when obtaining 
the average income of a population based on the average income of several population subgroups 
or geographical areas, a proper computation requires that each subgroup or area is given its 
proper weight in the total: suppose you have the average (per capita) income of Canada, the US 
and Mexico, and want to compute the average North American per capita income. The simple 
average of the three countries’ per capita GDP would not do, since the US population is far larger 
than the population of the other two countries. Multiplying each national per capita income by the 
country's population, adding up the results, and dividing by the total population of North 
America, would give the appropriate answer. In an equivalent formulation, multiplying each 
national per capita income by the country's proportional share in North American population, and 
adding up the results, would yield the same result. 
The same happens with weighting variables instead of weighting cases. Suppose you want to 
construct an overall scale based on several variables, but some of the variables are considered 
more important than others. For instance, some grades may come from short one-week courses or 
workshops while others represent full-semester courses involving much more study work (and 
more credits). Multiplying each grade by some measure of the course's length and importance 
(such as credits) may give a more adequate grade average than simply averaging all grades. 
This paper is concerned mainly with weighting cases, not with weighting variables. In particular, 
it is especially concerned with the weighting of cases made necessary by sampling (as opposed to 
other factors such as the different sizes of the three North American countries alluded before). 
However, the general principles apply to any kind of case weighting.  
Weighting variables, on the other hand, is a completely different matter. When adding several 
variables, for example in scale construction, some of them may be given more weight based on a 
variety of considerations. The simplest aggregation of variables with equal weight, such as a 
simple average of various grades in school to obtain a general grade average, may be regarded as 
unfair in some regards, because (for instance) longer or more difficult courses should be given 
more weight. These weights can be given exogenously (e.g. the courses’ credit ratings), or may 
arise from the data themselves as in the case of various procedures such as factor analysis, which 
reduce a number of observed variables to a smaller number of underlying "factors", and each 
observed variable has a different weight towards each underlying factor. As said before, this 
matter of weighting the variables is outside the scope of this paper and will be ignored hereafter. 

3. Sampling  
Samples, as is well known, can be random or not random. Most statistical analyses are based on 
the assumption that a random sample is used, and most of this paper is concerned with weighting 
of random samples. Weighting, of course, cannot do the trick of converting a non-random sample 
into a random one (though it can somewhat improve the estimates derived from it). Random 
sampling from a given population usually involves one or more of the following devices: 

 Simple random sampling: Cases are selected from a list containing all cases that belong 
to the population of interest. Example: the population is defined as all current members of 
the American Medical Association, which are fully listed by the Association, and a 

                                                      
3 In this paper, "mean" and "average" are used interchangeably, and refer to the arithmetic mean. 
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sample is drawn by selecting one of every 100 members from the list, using some 
standard random sampling procedure. Another example: randomly select 20 US senators 
from the complete list of current members of the US Senate. In some instances the list 
does not actually exist but some other equivalent device is used. For instance, select one 
out of every 10 homes in a street, just by walking down the street and counting homes. 
You may also have to fix the starting point at random, e.g. using a table of random 
numbers to choose one of the first ten homes from the North (or South) end of the street. 

 Stratified sampling. The population is exhaustively divided into two or more strata, and 
then a simple random sample is drawn from each stratum, not leaving any stratum aside. 
This makes more likely that cases are evenly selected from all the strata, thus reducing 
the possibility that the sample is disproportionately concentrated on one part of the 
population. Also, if the stratification is somehow related to the variables of interest, then 
the variance of those variables within each stratum will be lower than the overall 
variance of the population at large. This reduces overall sampling error. For instance, 
suppose the study is on the entire population of New York City and the variable of 
interest is household income. If each borough of the city is regarded as a stratum, it is 
likely that average income differs across boroughs, and the variance of household 
incomes within each borough (relative to the borough mean) is smaller than it is for the 
entire city (relative to the city mean) because affluent or poor people tend to concentrate 
on certain zones (e.g. incomes may be more homogeneous within Queens or within 
Manhattan than they are for the entire city). 

 Cluster sampling. The population, or each stratum, is subdivided into a number of 
clusters or subdivisions of any kind; then some of the clusters are selected, and a random 
sample of cases is chosen within each selected cluster. For instance, in each borough of 
NYC a number of ZIP code areas are randomly selected, and then a random sample of 
households is in turn selected within each chosen ZIP code area. Unlike stratification, 
clustering involves two stages of selection: first some clusters are selected, and only then 
some cases are selected within the selected clusters. Households in other ZIP code areas 
have no chance of being interviewed once the sample of ZIP codes has been already 
selected. Clustering, unlike stratification, tends to increase overall sampling error. This 
danger is highest when there are relatively few large clusters, quite different to each 
other, and very few are actually selected. Suppose for a sample of the US the country is 
split into three Regions, i.e. three strata, according to Standard Time Zones (East, Center, 
West) and then two States (clusters) are chosen within each region. For the East, results 
will be very different if New York and Maine are chosen than in case Georgia and 
Alabama are selected. If there are numerous small clusters, as in the case of ZIP code 
areas, and the sample of ZIP areas is relatively large itself, comprising a fairly generous 
number of clusters, the possibility of distortion is lower. 

Stratification reduces sampling error for the same overall sample size, or minimizes sample size 
for a given level of expected error, and this makes stratification a must for realistic sampling 
design of heterogeneous populations. Clustering, instead, actually increases sampling error, and 
this would make it unadvisable, were it not for its big cost advantages. Having sample cases 
concentrated in small geographical areas saves a lot on field work costs. Also, a complete list of 
cases within a cluster, such as a listing of households in one ZIP code area, is more easily 
compiled than a complete list of cases for the whole population.  
The three devices are usually combined in many real-life situations. In particular, large surveys in 
the Social Sciences usually combine the three. For instance, the country may be divided into 
regional strata, then clusters (communities, cities, neighborhoods, etc.) are chosen within each 
region, perhaps some smaller clusters (e.g. city blocks or ZIP areas) are selected within each 
selected larger cluster, and finally some persons or households are selected within each selected 
small cluster. 
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Sampling with and without replacement. Ordinary sampling in large populations is usually 
done without replacement (WOR). Once a unit has been selected, it cannot be selected again, and 
the rest of the sample is chosen among the remaining population. The opposite method is 
sometimes used, namely sampling with replacement (WR). With this latter approach, once a unit 
is selected it re-enters the population and can thus be selected again. All units, therefore, are 
selected from the same population, not excluding units already selected. In WR a given unit may 
thus be selected several times, and thus end up being represented in the sample by several copies 
of itself. This can be seen as a kind of weighting: a unit repeated three times in the sample would 
have a weight of 3, while those not repeated would have a weight of 1. This concept will be 
revisited below, but in general we will proceed in this paper as if the given sample is obtained 
without replacement.  
Proportionate and disproportionate sampling. A sample is a fraction of the corresponding 
population, and this fraction is called a sampling ratio, equivalent to sample size divided 
population size (n/N). It represents the probability that a unit is selected from a given population. 
If one selects one out of every ten households, the sampling ratio is 1/10=0.10, and each 
household has a 10% probability of being selected. More generally, if nk is the size of the sample 
from population group k and Nk is the size of population group k, the sampling ratio is fk=nk /Nk. 
In stratified and clustered samples, sampling ratios may differ from one part of the sample to 
another, for different reasons. Then two kinds of sample can be identified, namely those with a 
uniform or a variable sampling ratio. In samples with variable sampling ratio, i.e. arising from 
disproportionate sampling, the chances of one individual to be included in the sample may differ 
from the chances of other individual in the population. 
For instance, if a sample is taken from the lists of members of several scientific societies such as 
the American Economic Association and the American Psychological Association, it is possible 
that, say, 1:10 economists are chosen but only 1:200 psychologists, implying that sampling ratios 
(and the probability of a professional to be included in the sample) are 0.100 for members of 
AEA and 0.005 for members of APA.   
Planned and realized sampling ratio. Sometimes the actual number of cases in the sample 
differs from the planned number, due to several possible reasons (interview refused by some 
contacted respondents, people not contacted because not found at home after repeated visits, 
questionnaires filled but rejected due to poor quality, etc.). Whereas the planned sampling ratio is 
embodied in careful selection procedures in the field, such as using random numbers or randomly 
choosing from a list, refusals and rejections may obey non-random reasons. For instance, perhaps 
upper income households are more likely to refuse responding, or lower-income households may 
be more likely to produce poor quality questionnaires (especially if the questionnaires are self-
administered).  
In some surveys, some failures are replaced, on the assumption that the replacement is similar to 
the case being replaced. This is more likely to be true, for instance, in cases apparently due to 
random reasons such as not finding anybody at home at various visits, but is likely to involve a 
bias if a household not willing to be interviewed is replaced by a willing one, because the latter 
may have different characteristics from the former. 
The existence of replacements as well as unplanned changes in sample size may involve assump-
tions and decisions, which are to some degree arbitrary, affecting which sample size (planned or 
actual) is to be used to compute sampling ratios (and thus to compute weights, as will be explain-
ed below). This will vary from one survey to the next, and for the purpose of this paper, the 
question is ignored. Thus nk is simply regarded as the sample size for population group k, without 
further elaboration. It is usually the realized sample, but in some cases it may include some 
correction for refusals and replacements. 
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4. Sample weighting 
A sample is, by definition, smaller than the corresponding population. Besides, it could be a 
disproportionate representation of the population if some groups are over- or under-represented. 
Thus it differs from the population in scale, in proportions, or both. Applying weights to samples 
seeks the general goal of making the sample more like the population at large. Its two main 
possible specific purposes (not exclusive of each other) are: 

a. Correcting for scale 
b. Correcting for proportions 

Scale weighting. For some purposes, estimating population totals based on a sample may be 
important, and practitioners may want that tables reflect the actual size of the population rather 
than the size of the sample. For instance, an announcement that the finale of the World Cup was 
viewed on TV by 2.5 billion people worldwide may be more interesting than learning that it was 
viewed by 15,365 persons interviewed in various countries (which may be actually where the 
other estimate came from). 
Expanding the scale of the results, from sample to population scale, is usually done by means of 
weights of the general form w=N/n, whereby sample results are multiplied by the reciprocal of 
the sampling ratio n/N.  
In a simple random sample there is only one sampling ratio throughout, so scale weighting is 
achieved by multiplying everything by N/n. This overall or uniform scale factor will be 
designated by v and defined by: 
 

n
Nv =  Eq. 1

 
Suppose, for instance, you have a simple random sample of doctors who are members of the 
American Medical Association. You simply selected n doctors out of a list of N doctors. You 
want to know how many doctors smoke. Instead of reporting the actual number of smokers in 
your sample, you multiply that number by v=N/n, to obtain an estimate of the total number of 
smoking doctors in the US. There is only one scale factor for all cases, because the sample is a 
simple random sample. 
Proportional weighting. In complex sampling designs, e.g. stratified or clustered sampling, 
sampling ratios vary. As a result, proportions in the overall sample may not coincide with 
proportions in the population. Correcting for this is done with proportional weights, which are 
specific to every subdivision of the sample for which the sampling ratio is homogeneous (e.g. 
each stratum), and can be designated as kπ  with the general form πk=% of stratum in population 
/ % of stratum in the sample: 

 nn
NN

k

k
k /

/
=π  Eq. 2

In this kind of weights, cases in stratum k receive a proportional weight π = 1 if that group is 
represented in the sample in the same proportion it appears in the total population. When kπ <1 
the group has been over-sampled (its proportion in the sample, nk/n, is larger than its proportion 
in the population, Nk/N), and in the opposite case kπ >1 means the group was under-sampled (its 
proportion in the sample is smaller than its proportion in the population). Proportional weights 
inflate under-sampled cases, and deflate the over-sampled ones. 
Mixed or integrated weighting. The purely proportional weights of Eq.2 do not expand results 
to population size. Only the proportions are restored. On the other hand, we have seen that simply 
inflating sample results to population scale by a uniform factor N/n does not correct the 
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proportions in the sample. A mixed weight accomplishing the two functions can be obtained by 
multiplying the two: 
 kk vw π=  Eq. 3
If the scale factor of Eq. 1 is multiplied by the proportional factor of Eq 2, the result is reduced to 
the simple expression of a reciprocal sampling ratio for the stratum in question: 
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/
/  Eq. 4

These weights (Eq. 4) accomplish the two functions at once: they adjust sample figures to 
population scale, and they also correct imbalances in sampling ratios from one stratum to the 
next. In view of this they may be called combined, mixed or integrated weights. 
Weighting with sub-strata and with clusters. When the sampling design involves a hierarchical 
scheme of major strata divided into sub-strata, or some form of clustering is used, weights are in 
principle computed the same way. The final sampling ratio is the product of successive levels of 
sampling ratios, and the same for their reciprocals. Suppose for instance, that a first-order 
stratification divides the population into k strata (e.g. US States), then each stratum is subdivided 
into h sub-strata (e.g. counties), then a certain proportion pkh of clusters (e.g. ZIP areas) is 
selected in each sub-strata, and finally a proportion q of final sampling units (e.g. households) is 
selected within each selected cluster (i.e. within each selected ZIP area). Assume for the sake of 
simplicity that no information exists as to the total number of households per ZIP zone, so it must 
be inferred on the basis of households counted in the selected ZIP areas. Each household in the 
mth ZIP zone of the kth county belonging to the ith State will have a weight defined by: 
 

ki

ki
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mki
mki z

Z
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H

w =  Eq. 5

In plain words, the final weight equals the reciprocal of the probability of the household being 
selected within its ZIP zone, multiplied by the reciprocal of the probability of that ZIP zone being 
selected among all the ZIP zones in the county. Since all counties in each state are included in the 
sample, and also all states without exception, the probability of a county or state being selected is 
uniformly 1, and is therefore omitted from the equation in this particular example. In more 
general terms, the probability of a final unit being selected is the product of selection probabilities 
at all previous stages of the selection process, from top to bottom. If some primary units are 
selected with probability pi, and within the selected units there is a selection of secondary units 
with probability p(i)j, i.e. probability pj within the ith primary unit, and so on until the elementary 
units are selected with probability p(ijkm…)z within the selected penultimate units, then the overall 
probability of a final unit to be selected is: 
 zijkmmijkkijjiizijkm pppppp ...)()()()(... ...= Eq. 6
The overall mixed weight (performing both scale and proportion weighting) is simply the 
reciprocal of this probability: 

 
zijkmmijkkijjiizijkmmijkkijjiizijkm

zijkm ppppppppppp
w

...)()()()(...)()()()(...
...

1...1111
...

11
===  Eq. 7

Multiplying these weights zijkmw ... by n/N (i.e. by the simple overall sampling ratio) will convert 
these mixed weights into proportional weights with no scale effect, previously designated as πk 
(in this case they would be designated as πijkm…z because of the many stages involved in sample 
design). 

5. Sample and population: The law of large numbers 
Sample results are supposedly representative of the population from which the sample comes. 
This is formalized in the mathematical theory of sampling error, whose cornerstone is the so-
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called Law of Large Numbers. Simply stated, that Law says that if repeated samples of the same 
size are drawn at random from the same population, and a certain measure (such as a mean) is 
taken in each sample, the estimate from each sample may differ from that of other samples, but 
the distribution of these results will have the shape of a normal curve, whose average is the true 
population mean  
Suppose, for instance, that several samples of n male adults are drawn at random from a male 
population, and each man in each sample has his height measured in centimeters. All samples 
have the same size (say, n = 100 males), and for each sample the average height is computed. For 
the kth sample this average height would be Hk. The sample mean would differ from one sample to 
the next. If many sample means are taken, they would tend to be normally distributed about a 
"mean of means" (the mean of all sample means), and this mean of means would tend to equal the 
mean height of all adult males in the population. We say "tend to be" and "tend to equal", because 
this would be a function of (a) the number of samples taken and (b) the size of the samples. The 
larger the samples, and the more numerous they are, more and more the distribution of their 
means would approximate a bell-shaped distribution and more and more their overall mean of 
means would approximate the true population mean.  
Variable distribution and sampling distribution. A variable in a population (or in a sample) 
may have any frequency distribution. Individual heights in a given sample of men (or in the entire 
population) may include many different values, with some people shorter and some taller than 
average. In the case of heights, the distribution of individual heights within a sample or within the 
entire population is likely to be itself a normal distribution, because most biological variables 
have that kind of distribution, but other variables (e.g. income) may have a more skewed or 
otherwise non-normal distribution. Some variables may have a uniform distribution, or a U-
shaped distribution, where cases are concentrated at the extremes with fewer in the middle, or 
they may have a decreasing distribution with many cases in the low range and fewer at higher 
values of the variable, or whatever other distribution one may possibly imagine. In other words, 
the distribution of the variable among individuals, at sample and population level, is indeter-
minate and has little to do with the present discussion. 
Whatever the distribution of a variable within a sample, it will always have a mean. If many 
samples are drawn, we would have many sample means. The sampling distribution of a 
variable is not the distribution of individual values about the sample mean but the distribution of 
sample means about the population "mean of means". The first is "within the sample" and the 
second is "across samples".  
Statistical inference requires that samples are random, because it is a proven mathematical theo-
rem (and also an empirical finding) that the sampling distribution of sample means coming from 
many random samples of the same population tends to be a normal distribution, whose mean 
tends to coincide with the population mean.4 Nothing of the sort is implied or required from the 
within-sample distribution of individuals around the sample mean. It is very important to stress 
this point, because many people confuse the normality of the sampling distribution with a 
requirement that the variables themselves have a normal distribution about their sample means. 
The statistical significance of sample results. When only one sample is available, which is the 
usual situation in real life, the analysts knows that a sample mean is not likely to be very far away 
from the population value, because the means of the various samples have a normal distribution, 
and furthermore, the average of this normal distribution (the mean of means) is close to the mean 
of all individuals in the population. The actual sample could be very far from the population 
mean, but the probability of this happening is relatively small if the sample is large enough and 
has been obtained at random. For instance, there is about 95% probability that a sample mean 

                                                      
4 Sample mean here refers to the average of continuous or interval-level variables, such as age or income, 
or to the average of binary variables (e.g. the percentage of females), which is equivalent to the average of 
the values 1 for women and 0 for males. So means or percentages are treated as equivalent. 
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height is within two standard deviations from the population mean height. One does not know 
whether this particular sample is not one of the unlucky samples in the other 5%, far below or far 
above the true value (perhaps our sample was almost entirely made of dwarfs or NBA players, 
even being a perfectly legitimate random sample).  
However, analysts are willing to take the risk. They realistically do not claim or aspire to be 
totally sure. They content themselves with a certain degree of probability. They would be happy 
to say something like "From a sample of n cases, mean height is estimated to be 175 cm, and 
there is a 95% probability that the true mean is not beyond 3 cm either side of my estimate". The 
95% confidence interval of ±3 cm is the range of heights where 95% of all possible samples are 
expected to fall. There is always the possibility of being stuck with a sample belonging to the 
other 5%, whose mean is situated outside the confidence interval around the population mean, but 
the probability is low enough to be accepted as one of the perils of working with samples.5 
As said before, a confidence interval is delimited by a certain number of standard deviations of 
the sampling distribution. For a 95% level of confidence, the interval is delimited by 1.96 
standard deviations each side of the sample mean. Of course stating that the sample mean is 
within 1.96 Std Dev from the population mean is equivalent to saying that the population mean is 
within 1.96 Std Dev from the sample mean. The standard deviations in question are not the 
standard deviations of the variable within the sample (variability of height among individuals) but 
the standard deviations of the sampling distribution (variability of average height across differ-
ent samples from the same population).  
The standard deviation of the sampling distribution of a variable x is also called the standard 
error of a sample estimate of x. It is defined by the following formula: 
 

n
SE x

x
σ

=  Eq. 8 

In this formula, σx is the standard deviation of the variable in the entire population, and n is the 
size of the sample. The 95% confidence interval of a sample estimate is ±1.96 SE at each side of 
the sample estimate. Notice that SE is always lower (usually much lower) than the standard 
deviation of the variable in the population, since to obtain SE the standard deviation of the 
variable is divided by the square root of sample size. Thus for a sample of 100 the SE would be 
10 times smaller than the standard deviation, because the square root of 100 is 10. 
The quantity σx in the numerator of Eq. 8, i.e. the population standard deviation of variable X, is 
of course unknown, as is the population mean. Only the sample mean and the sample standard 
deviation are known. It is usually assumed, however, that a reasonable estimate of the population 
standard deviation σx is given by sx, the standard deviation of X in the sample, i.e. in the one and 
only sample which has been actually observed. So in fact the standard error is estimated as: 
 

n
s

SE x
x =  Eq. 9 

Of course, the observed sample is only one of the many possible samples. Just as sample means 
vary across different samples around the true population mean, so sample standard deviations sx 
vary across samples around the population standard deviation σx. There is no guarantee that the 
observed sample standard deviation sx coincides with (or is even close to) the true population 
standard deviation σx, but there is usually no other way to go. One source of consolation is that 
the sampling variability of sample standard deviations is usually lower than the sampling 
variability of sample means, so the observed sample standard deviation could be a reasonably 

                                                      
5 Changing the level of probability would result in a wider or narrower interval. Other usual confidence 
intervals are the 90% confidence interval (which is narrower) and the 99% confidence interval (which is 
wider). In general, the higher the confidence level you wish for your estimation, the wider would the 
confidence interval have to be.  
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good estimate of the true population variance (provided the sample is large enough and obtained 
by random sampling).  
Now how is sx computed? In a simple random sample, the unbiased estimate of the population 
standard deviation is just the sample standard deviation, only with n-1 in the denominator instead 
of the usual n: 
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In a stratified sample, the best estimate of the population variance is not given by this formula, 
which would correspond to the standard deviation of one stratum. What is needed is the weighted 
average of the standard deviations of the various strata, computed relative to each stratum 
mean, instead of the overall mean. Assuming each stratum represents a proportion fk of the 
population, and a proportion gk of the sample, the estimate of the population standard deviation is 
the weighted average of the standard deviation observed in the various strata, weighted by their 
share in the population (fk). 
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This estimate of the population standard deviation, which is itself computed on the basis of 
weighting the sample results, is the figure to use in Eq. 9 to estimate the standard error of a 
stratified sample mean. The sample mean itself is also computed as a weighted average of the 
means observed in the various strata. Therefore, for a stratified sample the estimation of sampling 
error and confidence intervals depends on the population share of all the strata and also on sample 
size (n). If the means of the various strata are different, the SE for a stratified sample of size n 
would be smaller than for a simple random sample of the same size. 
When clustering is involved, the difficulty arises that only some clusters are chosen in each 
stratum, and this may disfigure the estimation of variance within each stratum. By choosing one 
cluster and disregarding others, one is betting that the selected clusters are representatives of the 
total, which may not be the case (imagine a random sample of households in some selected US 
States; the selected States could be mostly Western, or mostly Northeast Coast, or mostly 
Southern, with probably very different results). It is easily conceivable that variation within 
clusters is lower than variation across the entire stratum, since cluster members are 
geographically close to each other and may share many important characteristics, and be similar 
in others. For instance, income variation within a city block is likely to be lower than income 
variation across a whole city or borough. By observing several clusters, one may believe 
variability is low when in fact it is larger. Moreover, when only few large clusters exist and some 
of them are actually chosen, there is the plausible danger that the selected clusters are not 
representative of the average mean or variance in the population. Thus the average score in a 
scale of political orientation in a sample of predominantly Southern States may not coincide with 
the average of the country, and the variability of this variable in that sample may be much 
narrower than the variability existing in the whole country.  
In other words, using cluster sampling increases sampling error, but it increases it by an unknown 
factor (unless we have some external source of information on the variance prevailing in the 
population or stratum from which the clusters were selected). Analysts often make the convenient 
assumption that no such distortion exists, i.e. that variation among members of selected clusters 
equals the variation that would be observed in the whole population or stratum, but this can only 
be reasonable if the total number of clusters is relatively large, and the number of selected 
clusters is also relatively large. Thus randomly choosing three counties in a State with nine 
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counties is more dangerous than randomly choosing 300 ZIP areas in a territory with 900 ZIP 
areas. In the first case there might be enormous heterogeneity between counties, and (for 
instance) choosing the county where the main city of the State is located would lead to quite 
different results than not choosing that particular county. With 300 out of 900 ZIP areas the risk is 
more widely spread and on the whole much less worrying.  
In short, unless some estimation is available of the possible increase in sampling error due to 
clustering, applying the above formulas to samples that include clustering in some of its stages 
may lead to underestimation of sampling error. The resulting estimate of population standard 
deviation, if based on Eq.10-11, would likely be on the low side, and consequently the estimate of 
the standard error of estimates would also be lower than it should be. When no clustering is 
involved, instead, the formulas for random stratified sampling (Eq.10-11) would lead to unbiased 
estimates of the standard error.  
Weighted and unweighted data for significance tests. For samples designed other than by 
simple random sampling designs, computing significance tests on the basis of unweighted data 
would create bias in significance tests, as it would in any other statistical estimation (means, 
standard deviations, percentages or whatever). 
Sampling ratios, and thus weights, must be taken into account to compute valid significance tests 
for sample data. However, what is crucial in this regard is the proportional aspect of weighting 
(giving each sample observation its proper relative weight), and not the scale effect (expanding 
sample results to population size).  

6. Weighting in SPSS 
By default SPSS does not apply weights to cases in a data set. If the data set comprises n cases, 
totals in a table will show a total of n. This can be seen as if every case has a weight of 1. How-
ever, the user can use the individual values of any variable as case weights. For instance, the 
command WEIGHT BY X would use the values of variable X as case weights. 
Weights can be uniform (all cases have the same weight) or variable (cases have possibly 
different weights). If all cases are assigned a uniform weight, for instance 100, then all the data 
would be multiplied by 100, and table totals for example would be 100 times the sample size. 
Using such a uniform weight would increase the scale of the totals without altering the 
proportions between them. If the sample comprises, for instance, 50 males and 40 females, the 
weighted totals would be 5000 males and 4000 females. The weighted total is, in fact, the sum of 
all weights (in this case, 50 x 100 = 5000 and 40 x 100 = 4000). 
The user can also assign specific weights to each case, which is the most usual situation. Suppose 
the sample was stratified, and the three strata were randomly sampled with sampling ratios of 
0.05, 0.005 and 0.0005. The weights (responding to the formula Nk/nk) would be the reciprocal of 
these fractions, i.e. respectively 20, 200 and 2000. The user can assign these values to all cases by 
creating a variable (call it X) which equals 20 for every case in stratum one; 200 for every case in 
stratum two, and 2000 for cases in stratum three. Then the command WEIGHT BY could be used 
to establish the X variable as the weighting variable. From the moment this WEIGHT BY 
command is issued, SPSS would multiply each case by its weight whenever asked to do some 
statistical analysis. Suppose a data file with seven cases, pertaining to three strata. The file is 
initially not weighted.  
The average age of the subjects would be computed by multiplying each age by the 
corresponding weight (which is 1 by default), adding up these products, and dividing by the sum 
of weights, which in this case equals the number of cases (7). This average would be 44.57 years 
for the seven cases included in the example. 
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Case ID Weight Stratum X Age Age x Weight 
1 1 1 20 18 18 
2 1 1 20 21 21 
3 1 2 200 42 42 
4 1 2 200 38 38 
5 1 2 200 37 37 
6 1 3 2,000 72 72 
7 1 3 2,000 84 84 

Totals 
n=7 sum=7   312 312 

Average = 312/7 = 44.57 
 

This is, strictly speaking, a weighted average, but the weights are all 1 and thus trivial. For this 
reason this is called the unweighted average of the variable, not because it is really not weighted, 
but because all the weights equal 1. 
After issuing the command WEIGHT BY X, the values of X are used as weights.6 The average 
now would respond to the same formula: multiply individual ages by the weights, add up, and 
divide by the sum of weights, as shown in the following table. 

Weight Stratum X Case ID Age Age x Weight 
20 1 20 1 18 360 
20 1 20 2 21 420 

200 2 200 3 42 8,400 
200 2 200 4 38 7,600 
200 2 200 5 37 7,400 

2,000 3 2,000 6 72 144,000 
2,000 3 2,000 7 84 168,000 

Totals 
4,640   n=7 312 336,180 

Average = 336,180 / 4,640 =72.45 

The sum of weights is now 4,640, and the average is now 72.45 years of age as can be easily 
checked. The average age is now higher, because the older people in the sample (cases 6 and 7) 
are given much more weight than the rest of the sample. The "Totals" row shows not only the 
sum of ages (312) and the number of cases in the sample (7) but also the sum of weights and the 
sum of the products of age by weight. Their ratio 336,180 / 4,640 = 72.45 is the weighted mean 
of age for these seven subjects. This is a properly weighted estimate of mean age for the 
population represented by this sample. Notice that in both cases the mean is obtained by dividing 
the sum of Age x Weight by the sum of weights, though in the first case all weights were 1. 
The weights used in the second example are mixed or integrated weights. They increase the 
scale of the figures and at the same time correct the proportions in the sample. For this reason, the 
total "number of cases" (equivalent to the sum of weights) appears to be 4,640 instead of 7. The 
weights here are generally the reciprocal of sampling ratios, Nk/nk.  
Any frequency tabulation coming from this weighted file will show a total of 4,640 cases, i.e. the 
sum of weights, because the seven cases "represent" 4,640 cases in the population.  
For some purposes, this scale effect, augmenting table totals to population scale, may not be desi-
rable. Purely proportional weighting with no scale effect can easily be substituted. To achieve 
this, we create a new variable Y which is the product of X by n/N = 7/4640 = 0.00091623.  

                                                      
6 What is specified for weighting is the weighting variable itself, not its specific values at the time it is 
designated. If the values of X are subsequently modified, e.g. by a transformation command or by 
importing new values from some outside source, the new values of X would be automatically used for 
weighting, without requiring that the X variable is designated again as the weighting variable.  
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COMPUTE Y=X*7/4640. 
FORMAT Y (F12.8). 

[The FORMAT command instructs SPSS to show a maximum of 12 places for Y, including the 
decimal point, and 8 decimals, in the visible display of the new variable. This does not affect the 
internal precision of the variable (SPSS always has about 15 decimals of precision for all 
variables) but just its visible appearance.] The resulting weights are as follows: 

Case ID X Y = Xn/N 
1 20 0.03017241 
2 20 0.03017241 
3 200 0.30172414 
4 200 0.30172414 
5 200 0.30172414 
6 2,000 3.01724138 
7 2,000 3.01724138 

     
Total 4,640 7.00000000 

Since Y equals the old variable X divided by N and multiplied by n, the sum of Y equals 7, the 
sample size (except for rounding error). Now the weighted number of cases (i.e. the sum of 
weights) is again 7, with no change of scale. Any frequency table produced by this file, if 
weighted by Y, would give a total of 7 cases. The weights, however, are no longer all equal to 1. 
Some are lower than 1, some are larger. The first two cases are counted (roughly) as 0.03 cases 
each, the third and fourth as 0.3 cases each, and the last two cases as equivalent to 3 cases each. 

The estimation of the mean of Age for these seven cases is done based on the weighted cases, i.e. 
multiplying each age by the corresponding weight. The mean, which is independent of scale, is 
always 72.45, as was when the mixed (and inflationary) weights X were used. The following 
table shows how the average age is now computed in the fictional sample of just seven cases. 
Notice that the sum of weights (first column) equals the number of cases in the sample. 

Weight Stratum X Y Case ID Age Age x Weight 
0.03017241 1 20 0.03017241 1 18 0.5431034 
0.03017241 1 20 0.03017241 2 21 0.6336207 
0.30172414 2 200 0.30172414 3 42 12.6724138 
0.30172414 2 200 0.30172414 4 38 11.4655172 
0.30172414 2 200 0.30172414 5 37 11.1637931 
3.01724138 3 2000 3.01724138 6 72 217.2413793 
3.01724138 3 2000 3.01724138 7 84 253.4482759 

Totals 
Sum=7    n=7  507.1681034 

Average = 507.1681034 / 7 = 72.45 
To summarize, SPSS assumes by default that all cases have a unit weight, but users may use any 
variable to assign weight to cases. Usually, weights are a variable in the file, like X or Y in the 
above examples. Any [numerical] variable may be used for weighting through the syntax 
command WEIGHT BY… An alternative way is through the graphic interface menu, choosing 
Data / Weight data / Weight by… If a file is weighted by some variable, it remains so until the 
order is cancelled by WEIGHT OFF or another weight variable is established. If a weighted file is 
saved, it will still be weighted when re-opened. Also, it is worth noticing that the weighting 
facility uses the current values of the weighting variable: if the weighting variable is recalculated 
and given new values it is automatically re-weighted by the new values of the variable. There is 
no need to instruct SPSS again to use that variable just because it has new values. 
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If the sum of weights is not equal to the number of cases, i.e. if the weights are scale weights, the 
totals computed from the sample would be scaled up to the scale represented by the sum of 
weights, usually the scale of the population. This affects all frequencies and totals, including the 
number of cases in a table, the grand total of incomes for all households in a table, and so on.  
Weights affect the scale of the cases and also the proportion of each case relative to others. Even 
for inflationary weights, relative quantities such as means or percentages are only affected by the 
proportional aspect of weights. If weights are different for different cases, even if the sum of 
weights equals the number of cases in the sample, weighted averages will differ from simple, 
non-weighted averages.  
If a single scale weight is applied to all cases (for example, multiplying all cases by N/n), the 
scale of totals will be increased but percentages and means will not be affected, because 
proportions between cases have not been altered. 
Weights are only taken into account when they are positive. Any non-positive value for the 
weight variable (negative, zero or missing) is not used. If a case has a negative, zero or missing 
weight, the case is not included in the analysis, and SPSS issues a warning in the output. 

7. Significance tests and weighting in SPSS 
As said before, SPSS always takes data as weighted, even if by default the weight of all cases is 
uniformly 1 and thus irrelevant. When a statistical procedure requires taking the total number of 
cases, SPSS invariably takes the sum of weights, not the actual number of cases in the file, even if 
often both amount to the same figure. 
This means, for instance, that in the calculation of standard errors, which involve the square root 
of sample size (see Eq.8 and Eq. 9), the standard deviation is divided by the square root of the 
sum of weights. If the sum of weights is different from the actual number of cases in the file, as 
with inflationary weights, then SPSS may divide the standard deviation by a number that is far 
larger than the square root of sample size. In doing so, SPSS would estimate a standard error for 
its estimates that is misleadingly small. 
The weights available for many sample surveys are of the mixed or integral type, combining the 
two functions of re-scaling and re-proportioning the sample. If so, the analyst is faced with a stark 
choice: 

 If significance tests are computed with a weighted file using inflationary weights, propor-
tions between strata will be right but the standard errors would be under-estimated becau-
se inflationary weights fool SPSS into believing that the sample is as large as the popula-
tion. If a sample of, say, 1000 cases is taken from a population of 20 million, many small 
differences, which are in fact not significant with the given sample size, will appear as 
significant just because SPSS believes the "sample size" equals the estimated population 
size of 20 million. 

 If weights are discarded, and significance tests applied on the unweighted data file, the 
tests may give wrong results when sampling ratios vary between groups of cases. The 
scale of the sample will be right but the proportions of the strata may be distorted. 
Sample cases from the under-sampled strata would receive the same weight as cases from 
the over-sampled strata, causing errors of estimation for both averages and standard 
errors (mean age in the above example would be estimated at 44 years instead of 72, and 
also standard errors may be wrong). 

The point is that a correct analysis in this case requires using purely proportional weights, 
eliminating the scale effect. This could be achieved, as seen before, by multiplying all existing 
(inflationary) weights by n/N, whereby the sum of weights will be n, and the proportions between 
strata will be right. 
This solution would get unbiased estimates and correct significance tests, insofar as the effect of 
clustering in sample design is not important. In fact, the real constraint is the intra-cluster 
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correlation of variables. A suitable summary of this constraint is as follows: "The degree of 
underestimation [of standard errors] depends upon the size of the intra-cluster correlation 
coefficient for the variables being analyzed. The higher the intra-cluster correlation, the more 
serious the underestimation of the variability".7 
As a rule of thumb, whenever clustering is "populous" (meaning that a stratum is subdivided into 
a large number of relatively small clusters, like ZIP areas in a State, and then a large number of 
those numerous small clusters is actually selected), the error involved is likely to be slight. On the 
other hand, in the case of "sparse clustering" (meaning that the stratum is divided into a small 
number of relatively large clusters, as counties within a State) and then a small number of these 
large clusters is chosen, then the possibility of under-estimating the standard error would be 
greater. The rationale for this rule of thumb is that in the case of many small clusters intra-cluster 
correlation coefficients are likely to be relatively small. When no clustering is involved, or intra-
cluster correlation coefficients are all small and possibly near zero, a purely proportional weight 
yields correct estimates of data variability and standard errors, and thus provides accurate 
estimates of significance.  
For complex samples in general, and especially those involving clustering, SPSS provides a 
special module, called Complex Samples, which computes standard errors for a variety of 
sample designs.8 A similar feature exists in other statistical software packages such as SUDAAN. 
Whenever possible, significance tests for complex sample data involving clustering should be 
conducted using those software packages. Proportional weights in the presence of large clusters 
and nonzero intra-cluster correlation are likely to underestimate error and overestimate 
significance. 
The variance of the sampling distribution of a sample measure (mean, percentage, regression 
coefficient, etc.) can also be estimated through so-called bootstrapping methods. Essentially, this 
computational device involves taking a large number of random samples of the same size, based 
on the observed sample. The relevant measure (e.g. a mean) is taken in all these samples, and the 
sampling distribution of this measure is estimated based on the results of all samples.9 

                                                      
7 Donna Brogan, "Pitfalls of using standard statistical software packages for sample survey data", Rollins 
School of Public Health, Emory University, Atlanta, 1997, appearing as a chapter in Encyclopedia of 
Biostatistics, edited by P. Armitage and T. Colton, Wiley, 1998, and also in the second edition, 2005. 
8 Complex Samples was originally distributed by SPSS as an independent piece of software, produced by 
another company, WesVar. In more recent times, starting with version 13, SPSS Inc. includes its own 
version of Complex Samples as an integrated module of SPSS. 
9 We have only one sample of size n, and cannot know the sampling distribution for all possible samples of 
that size. Bootstrapping estimates the sampling distribution with a large number of samples drawn from 
the same single sample we have. This is accomplished by using the given sample as a population of size n, 
and drawing many secondary samples of size n through sampling with replacement. Thereby a certain 
case A in the actual sample, once selected for a secondary sample, may possibly be selected again and 
again in the same secondary sample; thus sample size n may be reached before some other case (say B) is 
selected at all. Therefore a new sample of n cases may contain two or more copies of case A, and perhaps 
no copy of case B, thus yielding a different mean for the variable of interest. This is equivalent to having 
many samples composed of the same cases but giving varying weights to each case (represented by the 
number of replications of each case in the bootstrapped sample). In the above example, if case A is selected 
three times and case B is not selected, the resulting sample would have case A with a weight of 3, and case 
B with a weight of 0. After repeating this procedure many times (perhaps many thousands of times), 
obtaining as many secondary samples of size n, the distribution of the many means thus obtained will have 
a variance, which is an estimate of the unknown population variance. This procedure cannot possibly 
include cases in the population which were not included in the given sample, but it has been shown that the 
estimates obtained are usually quite good. See C. Z. Mooney and R. D. Duval, Bootstrapping: A 
Nonparametric Approach to Statistical Inference (Sage Publications, Quantitative Applications in the 
Social Sciences Series No. 95, Newbury Park, CA, 1993) for a short introduction. 
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To summarize, computing significance tests with SPSS without Complex Samples in the presence 
of unequal sampling ratios requires that the sample is weighted, and furthermore requires that 
weights are purely proportional (not altering the scale of results but keeping the sum of weights 
equal to sample size). If the sample design includes clustering, and especially if the clustering is 
"sparse" in the sense defined above (few large clusters instead of numerous small clusters), and/or 
many or all intra-cluster correlation coefficients are large, then SPSS Complex Samples (or 
SUDAAN) should be used. 

8. Other issues with weighting in SPSS 

8.1. The perils of fractional weights 
When one out of every 20 cases has been sampled, and then the sampling ratio is 0.05, the scale 
weight of each case is 20. It means that it is one case in the sample, but it counts as 20 cases in 
the population. But it is often the case that the reciprocal of sampling ratios is not a nice integer 
but a fractional number. For instance, if one stratum has a population of 125,467 and a sample of 
1,283 cases is used, the sampling ratio is 1,283/125,467 = 0.0102258 (rounded to 6 decimals). Its 
reciprocal is 97.791894, and therefore each case in the sample counts as more than 97 cases but 
less than 98 cases in the population.  
SPSS in general accepts fractional weights, but they nonetheless involve some complications 
worth noticing. One problem is that there are certain statistical procedures which do not accept 
fractional weights, notably Cox Regression (the main instrument of Survival Analysis, which 
estimates the effects of independent variables on the chances of subjects to survive for longer or 
shorter periods before some event hits them). If fractional weights are being used, they should be 
reduced to integers before applying Cox Regression, or the procedure will fail. 
Another problem with fractional weights is rounding. SPSS automatically rounds weighted 
frequencies to the nearest integer.10 This rounding is done by default on the total weighted fre-
quency, not on individual weights. In this case, table results may show some small 
inconsistencies. In the following fictional example, the table crosses two variables, approval of a 
proposition before and after reading some information. Six people disapproved, three of them 
before and three after reading. They correctly appear as six cases, 3 before and 3 after, in the 
unweighted table. In the weighted table they appear as 293 before and 293 after, but their total 
does not appear as 293+293=586, but as 587. 

Unweighted 
 Before After Total 
Approve … … … 
Disapprove 3 3 6 = 3 + 3 

Weighted 
 Before After Total 
Approve … … … 
Disapprove 293 293 587 ≠ 293+293 

These small discrepancies in table totals are almost invariably the result of rounding in the 
presence of fractional weights. When weights are "large", rounding off the decimals does not 
change them by much. Between 98 and 97.79, for instance, there is a relative difference of only 
0.2 percent, not likely to cause much trouble. But in the case of "small" weights, not very 
different from 1, rounding off the decimals may cause a large relative jump in the value of the 
weights. This is often the case with "purely proportional" weights which in general are defined by 
(Nk/N)/(nk/n). Typically, these weights may be numbers below or above 1, such as 0.80 or 1.45.  

                                                      
10 Recent versions of SPSS let the user control how rounding is done in procedures like CROSSTABS. 
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Rounding off these decimals is not an indifferent matter. Both 0.80 and 1.45 will be rounded to 1, 
which kills the very purpose of weighting. Suppose the weight of some cases is 0.30. If one case 
with weight 0.30 appears in a cell, the weighted (and rounded) total will be zero cases in that cell. 
If a second cell includes two cases from the same stratum, their weighted total will be 0.60, 
rounded to one case. If two more cells have respectively 3 and 4 cases from the same stratum, 
their sum would be 0.90 and 1.20, but both will be again rounded to just one case, meaning that 
(with those numerical weights) one case in the sample turns into an estimate of no case at all, 
while two, three or four cases in the sample translate into an estimate of only one case; therefore 
passing from no case to one case would have no visible impact as the weighted cell would be 
empty in both cases (one truly empty, the other with 0.30 cases equivalent to none); doubling the 
number of cases from 1 to 2 would turn an empty cell into one with one inhabitant, but doubling 
the sample frequency again (from 2 to 4) may cause no effect at all. 
All this does not sound right indeed. When large samples are involved, one or two cases added or 
subtracted may cause not much trouble, but in disaggregated tables with numerous cells there 
may be many low-frequency cells suffering the above problems, e.g. appearing empty although in 
fact populated, or appearing to have the same number of cases when in fact one of them harbors 
more cases than the other. Besides the statistical effect, readers may be disconcerted by these 
anomalies. 
A parallel, but different problem, one much more troubling indeed, is the fact that SPSS rounds 
off the frequencies, but not the totals of interval variables in weighted cells. Suppose a cell in a 
table shows the frequency, i.e. the number of people in the cell, and the next cell shows their total 
income. Suppose a cell contains only one case with weight 0.30, representing a person who 
happens to have an income of $10,000. When computing the frequency SPSS would report zero 
cases (1 case x 0.30 = 0.30 weighted cases, rounded to zero), but the neighboring cell for total 
income would report $10,000 x 0.30= $3,000. This income of $3,000 would appear as earned by 
nobody, since the number of people in that cell is reportedly zero.  
To avoid this in case like this one, SPSS in recent versions does not show any total or average 
when the sum of weights in a cell is below 1, but this in turn may cause inconsistent sums for 
rows or columns. Also, if the sum of weights exceeds 1, SPSS will show non-rounded totals and 
averages, and this may cause some problems and small discrepancies. When using fractional 
weights, a weighted frequency of 14.05 and another of 14.49 would both be rounded to 14, while 
average or total incomes for these cases are not rounded at all. Suppose two cells have an 
aggregate weighted income of $4,214.53 and their weighted frequencies are 14.02 and 14.49 
people. The frequencies would both appear to be 14, the aggregate income would be $4,214.53 in 
both cases, but the mean income would be different: 300.6 for the first cell and 290.85 for the 
second. For large frequencies, say in the hundreds or thousands, this is hardly a problem, a few 
decimals could hardly make a difference, but for cells containing one-digit or two-digit 
frequencies these discrepancies might cause some confusion. Some warnings in the tables about 
figures not adding up due to rounding are advisable. 
 
To avoid this problem altogether, it is preferable that integer weights are used for all work 
involving frequencies, but for calculations involving standard errors and significance, as 
explained before, sample size has to be preserved and thus purely proportional weights are 
advisable, and they are inherently fractional. Proportional weights are normally small and 
inevitably involve significant decimals. Thus users may hold two sets of weights in their data set, 
one inflationary set of integer weights and one purely proportional set, which may have decimals. 
If a user needs to produce a table and a significance test on its contents (for example a 
contingency table and the corresponding chi square statistic) it is best that the table itself is 
computed with integer weights, perhaps inflationary ones, to yield consistent frequencies, and the 
chi square with purely proportional weights. The SPSS procedure CROSSTABS, in this case, 
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would have to be run twice, once with each type of weight, using the table resulting from one and 
the chi square resulting from the other. The following syntax shows a simple example. 

VAR LABEL X 'Mixed or integral weights' Y 'Purely proportional weights'. 
WEIGHT BY X. 
CROSSTABS OPINION BY SEX. 
WEIGHT BY Y. 
CROSSTABS OPINION BY SEX / STATISTICS=CHISQ. 
WEIGHT OFF. 

 
In this sequence of commands, first the data are weighted by X, which is a set of integrated or 
mixed weights with only integer values, producing both scale and proportion effects. A cross 
tabulation is ordered to show the distribution of certain opinions by sex. The resulting table 
(whose totals correspond to population totals because the weights inflate the scale to population 
size) will be used for presenting the data in tabular form. Then the data set are re-weighted by Y, 
a purely proportional set of weights preserving sample size. The second CROSSTABS specifies 
that the chi square statistic is produced alongside the table. The table produced in this second run 
would be disregarded, but the chi square from this run will be used to test the null hypothesis that 
opinion and sex are unrelated. For procedures not reporting frequencies, such as REGRESSION, 
proportional weights are recommended in order to preserve sample size and thus produce realistic 
significance test results.  
However, if the sampling design involves clustering, however, even using proportional weights 
may produce biased significance tests, and therefore the COMPLEX SAMPLES module should 
be used. 

8.2. Empty categories in tables and charts 
There is another use of weighting in SPSS which comes very handy on occasion. In SPSS 
versions prior to version 12, categories without any cases are not shown in tables and charts. For 
example, if a question asks for the most recent country visited by respondents, and nobody 
responds "Switzerland", then Switzerland will not appear in the table or chart produced with that 
question. It is often the case that users want all categories shown, even the "empty" ones. There is 
no apparent option to that effect in SPSS, except a trick using weighting. The trick consists of 
creating a fictitious additional case, whose last visited country is Switzerland, and assigning this 
case a very small weight such as 0.000001. This weight will be rounded to zero, and thus the case 
would not appear in the frequency tables or charts, but the Switzerland category will be shown. 
To show how to do this, suppose the new case is manually added at the end of the data set. 
Suppose you need Switzerland to appear in table showing last country visited by sex of the 
travelers. Only three variables must have valid values in the new case: ID, LASTTRIP and SEX. 
Assume the fictitious case has an ID=99999, and the variable LASTTRIP is marked for that case 
with the code for Switzerland. The sex of this imaginary traveler may be male or female; suppose 
we make it female (SEX=2 in the codification used for that survey). Suppose that the file, 
previously, had been weighted by a variable called OLDWGT. The following commands may be 
issued: 
 
COMPUTE NEWGT=OLDWGT. 
IF (ID=99999)NEWGT=0.000001. 
WEIGHT BY NEWGT. 
CROSSTABS LASTTRIP BY SEX. 
 
In the resulting tabulation of last destination by sex a line for Switzerland will be shown, but the 
entire line will be empty because the only case there (a female) has been weighted down to zero. 
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More precisely, the cell for females will show a zero, and the cell for males will be blank (if you 
want both to show zeros, you may create two fictitious cases, one for each sex). The weighted 
number of females and the weighted total number of cases in the table will not be affected by this 
procedure. Notice that the fictitious case needs not only the data about having visited Switzerland, 
but also the information about sex: if sex for the new case is blank, it would be a system-missing-
value case and would not be included in the table anyway. Of course, once its purpose is fulfilled 
the fictitious case may be deleted from the file to avoid error or confusion in the future. But 
before that, by introducing valid values of other variables into the phantom case, the user may be 
able to cause other empty categories to appear in tables, as with the Switzerland destination used 
as an example above. 
Notice that even if the weighted frequency is rounded to zero, the fictitious case still has values in 
the variables. What is rounded to zero is the frequency of that case, but not the value of any 
interval variable characterizing it. Suppose the table crosses the destination of latest trip with 
annual income. For Switzerland to appear in the table you must create a case with valid values 
both for country visited and for income. In recent versions of SPSS, as said before, totals or 
means are not reported for cells where the sum of weights is lower than 1, but this is unclear for 
older versions. If the figure assigned for income is sufficiently large, and the SPSS version not 
recent, some total income may possibly appear in the cell. For instance, if the fictitious total 
income assigned to the phantom case is $100,000, and its weight is 0.0001, the weighted and 
rounded number of cases would be zero but the weighted and rounded total income would be $10, 
which is inconsistent. To be on the safe side, therefore, just make sure that the weighted income 
of the phantom case is sufficiently low (less than $0.50) as to be rounded down to zero. For 
instance, if the phantom case is assigned an income of $100, and its weight is 0.0001, the 
weighted income would be $0.01, which would be rounded to $0 anyway. An equivalent 
approach is making the weight sufficiently small (e.g. changing it from 0.0001 to 
0.000000000001). This would ensure that (if you leave the phantom case in the file) the income 
of the phantom case does not get added to the income of real cases in other procedures. 
Using weights for empty categories, however, is becoming obsolete, as it could be avoided in 
recent versions of SPSS. In versions 12 and later, the CTABLES procedure allows users to decide 
whether to include or exclude empty categories, through the /EMPTY=INCLUDE statement 
within the /CATEGORIES subcommand. Likewise, in version 14 the same effect can be obtained 
for charts. 
 

8.3. Other people's tables 
Another special use of weighting with SPSS is related to analysis of tables taken from books, 
articles or any other sources. Sometimes in the course of research one finds a table in some 
publication, and wishes to ascertain, say, the significance of a percentage difference or the degree 
of association between the concerned variables. To achieve this, the user should create a small 
SPSS data file representing the cells in the table. Each cell in a contingency table corresponds to a 
combination of values of variables in the table, and the frequency in the table represents the 
number of cases having that particular combination of values. Suppose the table in question is as 
follows, showing type of occupation by region of residence. 
 

 1. Blue collar 2. Clerical 3. Professional 4. Self-employed 
1. East 332 418 125 62 
2. West 465 328 211 87 
3. South 225 248 152 112 

The user wants to know whether any association exists between the two variables, but the source 
does not give any association measure. To achieve this, the user should assign codes to the values 
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of each variable, and prepare an SPSS file with the following structure, in which each cell is 
converted into a "case": 

Region Occup Freq 
1 1 332
1 2 418
1 3 125
1 4 62
2 1 465
2 2 328
2 3 211
2 4 87
3 1 225
3 2 248
3 3 152
3 4 112

Of course region 1 is East, 2 is West and 3 is South, and likewise for occupations. If the file with 
this structure is in the data editor of SPSS, and variable FREQ is used for weighting, a cross 
tabulation would produce the same original table with the desired association statistics. The 
required syntax would be: 
 
 WEIGHT BY FREQ. 
 CROSSTABS REGION BY OCCUP/STATISTICS=ALL. 
 
The STATISTICS keyword may be specified to produce all the available measures, as in this 
example, or just the ones the researcher wants, for instance chi square (replacing keyword ALL 
by CHISQ in the above CROSSTABS command). In this example, the Pearson chi square value 
estimated by SPSS is 101.03436, while the alternative estimation by likelihood ratio is 98.03069, 
both of which are significant (p<0.00001). 
Therefore the WEIGHT command in SPSS does not only fulfill the function of giving data their 
proper proportional and/or absolute weight, but may also be used for other purposes as shown 
above.  


