> SPSS Programming
and Data Management, 3rd Edition

A Guide for SPSS and SAS® Users

Raynald Levesque and SPSS Inc.

For more information about SPSS® software products, please visit our Web site at http://www.spss.com or contact:

SPSS Inc.

233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its proprietary computer
software. No material describing such software may be produced or distributed without the written permission of the owners of

the trademark and license rights in the software and the copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The Rights in Technical Data and Computer Software
clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL 60606-6412.

General notice: Other product names mentioned herein are used for identification purposes only and may be trademarks of

their respective companies.

SAS is a registered trademark of SAS Institute Inc.

Windows is a registered trademark of Microsoft Corporation. Microsoft® Access, Microsoft® Excel, and Microsoft® Word are
products of Microsoft Corporation.

DataDirect, DataDirect Connect, INTERSOLYV, and SequeLink are registered trademarks of DataDirect Technologies.

Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc. ALL RIGHTS RESERVED.
LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.

Portions of this product were based on the work of the FreeType Team (http://www.freetype.org).

A portion of the SPSS software contains zlib technology. Copyright © 1995-2002 by Jean-loup Gailly and Mark Adler. The zlib
software is provided “as-is,” without express or implied warranty. In no event shall the authors of zlib be held liable for any
damages arising from the use of this software.

A portion of the SPSS software contains Sun Java Runtime libraries. Copyright © 2003 by Sun Microsystems, Inc. All rights
reserved. The Sun Java Runtime libraries include code licensed from RSA Security, Inc. Some portions of the libraries are
licensed from IBM and are available at http://oss.software.ibm.com/icu4j/. Sun makes no warranties to the software of any kind.
Sax Basic is a trademark of Sax Software Corporation. Copyright © 1993-2004 by Polar Engineering and Consulting. All

rights reserved.

SPSS Programming and Data Management, 3rd Edition: A Guide for SPSS and SAS Users
Copyright © 2006 by SPSS Inc.
All rights reserved.

Printed in the United States of America.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher.

1234567890 09080706
ISBN 1-56827-374-6

Preface

Experienced data analysts know that a successful analysis or meaningful report often
requires more work in acquiring, merging, and transforming data than in specifying
the analysis or report itself. SPSS contains powerful tools for accomplishing and
automating these tasks. While much of this capability is available through the
graphical user interface, many of the most powerful features are available only through
command syntax. With release 14.0.1, SPSS makes the programming features of

its command syntax significantly more powerful by adding the ability to combine it
with a full-featured programming language. This book offers many examples of the
kinds of things that you can accomplish using SPSS command syntax by itself and in
combination with the Python programming language.

Using This Book

The contents of this book and the accompanying CD are discussed in Chapter 1. In
particular, see the section “Using This Book” if you plan to run the examples on the CD.
The CD also contains additional command files, macros, and scripts that are mentioned
but not discussed in the book and that can be useful for solving specific problems.

This edition has been updated to include numerous enhanced data management
features introduced in SPSS 14.0. Many examples will work with earlier versions, but
some examples rely on features not available prior to SPSS 14.0. All of the Python
examples require SPSS 14.0.1 or later.

For SAS Users

If you have more experience with SAS than with SPSS for data management, see
Chapter 19 for comparisons of the different approaches to handling various types of
data management tasks. Quite often, there is not a simple command-for-command
relationship between the two programs, although each accomplishes the desired end.

Acknowledgments

This book reflects the work of many members of the SPSS staff who have contributed
examples here and in SPSS Developer Central, as well as that of Raynald Levesque,
whose examples formed the backbone of earlier editions and remain important in
this edition. We also wish to thank Stephanie Schaller, who provided many sample
SAS jobs and helped to define what the SAS user would want to see, as well as
Marsha Hollar and Brian Teasley, the authors of the original chapter “SPSS for SAS
Programmers.”

A Note from Raynald Levesque

It has been a pleasure to be associated with this project from its inception. I have for
many years tried to help SPSS users understand and exploit its full potential. In this
context, I am thrilled about the opportunities afforded by the Python integration and
invite everyone to visit my site at www.spsstools.net for additional examples. And I
want to express my gratitude to my spouse, Nicole Tousignant, for her continued
support and understanding.

Raynald Levesque

Contents

1 Overview 1
UsingThisBook 1
Documentation Resources 2

Part I: Data Management

2 Best Practices and Efficiency Tips 5
Working with Command Syntax 5

Creating Command SyntaxFiles........... 5
Running SPSSCommands i 6
Syntax Rules 7
Customizing the Programming Environment 8
Displaying Commandsinthelog............. 8
Displaying the Status Bar in Command Syntax Windows 9
Protectingthe OriginalData 10
Do Not Overwrite Original Variables. 1
Using Temporary Transformations 1
Using Temporary Variables 12
Use EXECUTE Sparingly 14
LagFunctions i 14
Using SCASENUM to SelectCases.covvvevnnennnn.. 16
MISSING VALUES Command, 17
WRITE and XSAVE Commands., 17
Using Comments. vt e 17
Using SET SEED to Reproduce Random Samples or Values. 18

Divide and Conquert 19

Using INSERT with a Master Command Syntax File 20
Defining Global Settings. 20

3 Getting Data into SPSS 23

Getting Data from Databases 23
Installing Database Drivers, 23
Database Wizard. 25
Reading a Single Database Table. 25
Reading Multiple Tables. 27

Reading Excel Files. 30
Reading a “Typical” Worksheet. 31
Reading Multiple Worksheets 33

Reading Text Data Files. 36
Simple TextDataFiles i i 37
Delimited TextData 38
Fixed-Width TextData 42
Text Data Files with Very Wide Records 47
Reading Different Typesof TextData 43

Reading Complex Text DataFiles. 49
Mixed Files 50
GroupedFiles ... oo 51
Nested (Hierarchical)Files 54
RepeatingData i 59

Reading SASDataFiles i, 61

Reading Stata DataFiles. i 63

Vi

4 File Operations 65

Working with Multiple Data Sources. 65
Merging DataFiles 69
Merging Files with the Same Cases but Different Variables 69
Merging Files with the Same Variables but Different Cases 73
Updating Data Files by Merging New Values from Transaction Files. ... 77
AggregatingData. 79
Aggregate Summary Functions 81
Weighting Data. 82
Changing File Structure i i 84
Transposing Cases and Variables. 85
CasestoVariables. i i 86
Variablesto Cases. i 89

5 Variable and File Properties 95
Variable Properties. i 95
Variable Labels 98
ValueLabels 98
MissingValues i e 99
Measurementlevel.......... 100
Custom Variable Properties i 100
Using Variable Properties As Templates 102

File Properties ... e e e 103
6 Data Transformations 105
Recoding Categorical Variables 105

vii

Banding Scale Variables. 106

Simple Numeric Transformations 109
Arithmetic and Statistical Functions 110
Random Value and Distribution Functions. m
String Manipulation 112
Changing the Case of String Values 113
Combining String Values i 113
Taking Strings Apart 114
Working with Datesand Times 118
Date Inputand Display Formats 119
Dateand Time Functions 122

7 Cleaning and Validating Data 129

Finding and Displaying Invalid Values 129
Excluding Invalid Data from Analysis 132
Finding and Filtering Duplicates 133
Data Validation Option i 136

8 Conditional Processing, Looping, and
Repeating 139

Indenting Commands in Programming Structures 139
Conditional Processing. oot i e e 140
Conditional Transformations 140
Conditional Case Selection, 143
Simplifying Repetitive Tasks with DOREPEAT 144
ALL Keyword and Error Handling 147
VB CEOrS. o 147

viii

Creating Variableswith VECTOR 149

DisappearingVectors i i 149
LoOp STrUCTUIES .« . .ot 151
Indexing Clausest e 152
Nested LOOpSo 153
Conditional LOOPSot 155
Using XSAVE in a Loop to Builda DataFile...................... 156
Calculations Affected by Low Default MXLOOPS Setting 158
9 Exporting Data and Results 161
Output Management System. 161
Using Qutput as InputwithOMS 162
Adding Group Percentile Valuestoa DataFile................... 162
BootstrappingwithOMS 166
Transforming OXMLwith XSLT. i m
“Pushing” Contentfroman XMLFile 172
“Pulling” Contentfroman XMLFile 175
Positional Arguments versus Localized Text Attributes. 184
Layered Split-File Processing. i 185
Exporting Data to Other Applicationsand Formats 186
Saving Datain SASFormat i ... 186
Saving Datain StataFormat. 187
Saving DatainExcel Format. 189
Writing Data Backto aDatabase. 189
Saving DatainTextFormat. 192
Exporting Results to Word, Excel, and PowerPoint 192

10 Scoring Data with Predictive Models 193

Introduction 193
Basicsof ScoringData. 194
Command Syntax for Scoring. 194
Mapping Model Variables to SPSS Variables.................... 196
Missing ValuesinScoring i 196
Using Predictive Modeling to Identify Potential Customers 197
Building and Saving Predictive Models 197
Commands for ScoringYourData. 204
Including Post-Scoring Transformations 205
Getting Data and SavingResults 206
Running Your Scoring Job Using the SPSS Batch Facility. 207

Part Il: Programming with SPSS and Python

11 Introduction 211

12 Getting Started with Python Programming in

SPSS 215
The spss Python Module. 216
Submitting Commandsto SPSS. 217
Dynamically Creating SPSS Command Syntax. 219
Capturing and Accessing Output. 220
Python SyntaxRules. 222
Mixing Command Syntax and Program Blocks 224
Handling Errors. oo 227

UsingaPython IDE. e 228

Supplementary Python Modules for Use with SPSS 230
Getting Help oo oot 231
13 Best Practices 233
Creating Blocks of Command Syntax within Program Blocks. 233
Dynamically Specifying Command Syntax Using String Substitution 234
Using Raw StringsinPython. 237
Displaying Command Syntax Generated by Program Blocks 238
Handling Wide Outputinthe Viewer 239
Creating User-Defined FunctionsinPython......................... 239
Creating a File Handle to the SPSS Install Directory 241
Choosing the Best Programming Technology 242
Using Exception HandlinginPython 243
Debugging Your PythonCode i 247

14 Working with Variable Dictionary Information 251

Summarizing Variables by MeasurementLevel 253
Listing Variables of a Specified Format............................ 254
Checking If a Variable Exists. 256
Creating Separate Lists of Numeric and String Variables. 257
Using Object-Oriented Methods for Retrieving Dictionary Information. 258
Getting Started with the VariableDictClass 259
Defining a List of Variables between Two Variables 262
Identifying Variables without Value Labels...................... 264
Retrieving Definitions of User-Missing Values 268

Xi

Retrieving Variable or Datafile Attributes 268
Using Regular Expressions to Select Variables. 271

15 Getting Case Data from the Active Dataset 273

Usingthe CursorClass e 273
Reducing a String to Minimum Length. 2717
Using the spssdata Module. 280
Getting Started with the SpssdataClass. 281
Using Case Data to Calculate a Simple Statistic.................. 284

16 Retrieving Output from SPSS Commands 287

Getting Started with the XML Workspace 287
Writing XML Workspace ContentstoaFile 290
Using the spssauxModule 291

17 Creating, Modifying, and Saving Viewer

Contents 301
Getting Started with the viewer Module 302
Persistence of Objects. it 303
Creating a Custom PivotTable. 304
Modifying Pivot Tables 307
CreatingaTextBlock i 310
Using the viewer Module froma PythonIDE 312

xii

18 Tips on Migrating Command Syntax, Macro,

and Scripting Jobs to Python 313

Migrating Command Syntax JobstoPython 313
Migrating Macrosto Python. 317
Migrating Sax Basic ScriptstoPython 321

19 SPSS for SAS Programmers 329

ReadingData i 329
Reading Database Tables 329
Reading ExcelFiles 332
Reading TextData i, 334

MergingDataFiles i 334
Merging Files with the Same Cases but Different Variables 335
Merging Files with the Same Variables but Different Cases 336

AggregatingData. 337

Assigning Variable Properties. 338
Variable Labels 339
ValueLabels 339

Cleaning and ValidatingDatao, 341
Finding and Displaying Invalid Values. 341
Finding and Filtering Duplicates. 343

Transforming Data Values. i 344
RecodingData. 344
BandingData. 345
Numeric Functions 347
Random Number Functions 348
String Concatenation. i 349
String Parsing 350

xiii

Working with Datesand Times 351

Calculating and Converting Date and Time Intervals. 351
Adding to or Subtracting from One Date to Find Another Date 352
Extracting Date and Time Information 353
Custom Functions, Job Flow Control, and Global Macro Variables. 354
Creating Custom Functions 355
JobFlowControl 356
Creating Global Macro Variables. 358
Setting Global Macro Variables to Values from the Environment. 359

Appendix

A Python Functions 361

spss.CreateXPathDictionary Function. 362
spss.CursorFunction 362

spss.CursorMethods. 364
spss.DeleteXPathHandle Function 367
spss.EvaluateXPath Function L. 367
spss.GetCaseCount Function 368
spss.GetHandleList Function. 368
spss.GetLastErrorLevel and spss.GetLastErrorMessage Functions 369
spss.GetVariableCount Function. L. 370
spss.GetVariableFormat Function 370
spss.GetVariableLabel Function oL 373
spss.GetVariableMeasurementLevel Function. 373
spss.GetVariableName Function. L 374
spss.GetVariableType Function., 374
spss.GetXmlUtf16 Function i 375

Xiv

spss.IsOutputOn Function. 375

spss.PylnvokeSpss.IsXDriven Function. 375
spss.SetMacroValue Function 376
spss.SetOutput Function. 377
spss.StopSPSS Function. 377
spss.SubmitFunction 378

Index 381

XV

Chapter

Overview

This book is divided into two main sections:

m Data management using the SPSS command language. Although many of these tasks
can also be performed with the menus and dialog boxes, some very powerful
features are available only with command syntax.

® Programming with SPSS and Python. The SPSS Python plug-in provides the ability
to integrate the capabilities of the Python programming language with SPSS.
One of the major benefits of Python is the ability to add jobwise flow control
to the SPSS command stream. SPSS can execute casewise conditional actions
based on criteria that evaluate each case, but jobwise flow control—such as
running different procedures for different variables based on data type or level of
measurement, or determining which procedure to run next based on the results
of the last procedure—is much more difficult. The SPSS Python plug-in makes
jobwise flow control much easier to accomplish.

For readers who may be more familiar with the commands in the SAS system, Chapter
19 provides examples that demonstrate how some common data management and
programming tasks are handled in both SAS and SPSS.

Using This Book

This book is intended for use with SPSS release 14.0.1 or later. Many examples will
work with earlier versions, but some commands and features are not available in earlier
releases. None of the Python examples will work with earlier versions.

Most of the examples shown in this book are designed as hands-on exercises that
you can perform yourself. The CD that comes with the book contains the command
files and data files used in the examples. All of the sample files are contained in the
examples folder.

B \examples\commands contains SPSS command syntax files.

2

Chapter 1

B \examples\data contains data files in a variety of formats.

B \examples\python contains sample Python files.

All of the sample command files that contain file access commands assume that you
have copied the examples folder to your C drive. For example:

GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A)
AGGREGATE OUTFILE = 'C:\temp\tempdata.sav'

Many examples, such as the one above, also assume that you have a C:\temp folder
for writing temporary files. You can access command and data files from the
accompanying CD, substituting the drive location for C: in file access commands. For
commands that write files, however, you need to specify a valid folder location on a
device for which you have write access.

Documentation Resources

The SPSS Base User’s Guide documents the data management tools available through
the graphical user interface. The material is similar to that available in the Help system.
The SPSS Command Syntax Reference, which is installed as a PDF file with the
SPSS system, is a complete guide to the specifications for each SPSS command. The
guide provides many examples illustrating individual commands. It has only a few
extended examples illustrating how commands can be combined to accomplish the
kinds of tasks that analysts frequently encounter. Sections of the SPSS Command

Syntax Reference of particular interest include:

® The appendix “Defining Complex Files,” which covers the commands specifically
intended for reading common types of complex files

B The INPUT PROGRAM—END INPUT PROGRAM command, which provides rules
for working with input programs

All of the command syntax documentation is also available in the Help system. If you
type a command name or place the cursor inside a command in a syntax window and
press F1, you will be taken directly to the help for that command.

Part I:
Data Management

Chapter

Best Practices and Efficiency Tips

If you haven’t worked with SPSS command syntax before, you will probably start with
simple jobs that perform a few basic tasks. Since it is easier to develop good habits
while working with small jobs than to try to change bad habits once you move to more
complex situations, you may find the information in this chapter helpful.

Some of the practices suggested in this chapter are particularly useful for large
projects involving thousands of lines of code, many data files, and production jobs run
on a regular basis and/or on multiple data sources.

Working with Command Syntax

You don’t need to be a programmer to write SPSS command syntax, but there are a few
basic things you should know. A detailed introduction to SPSS command syntax is
available in the “Universals” section in the SPSS Command Syntax Reference.

Creating Command Syntax Files

An SPSS command file is a simple text file. You can use any text editor to create
a command syntax file, but SPSS provides a number of tools to make your job
easier. Most features available in the graphical user interface have command syntax
equivalents, and there are several ways to reveal this underlying command syntax:

m Use the Paste button. Make selections from the menus and dialog boxes, and then
click the Paste button instead of the OK button. This will paste the underlying
commands into a command syntax window.

® Record commands in the log. Select Display commands in the log on the Viewer
tab in the Options dialog box (Edit menu, Options) or run the command SET
PRINTBACK ON. As you run analyses, the commands for your dialog box
selections will be recorded and displayed in the log in the Viewer window. You can

6

Chapter 2

then copy and paste the commands from the Viewer into a syntax window or text
editor. This setting persists across sessions, so you have to specify it only once.

Retrieve commands from the journal file. Most actions that you perform in the
graphical user interface (and all commands that you run from a command syntax
window) are automatically recorded in the journal file in the form of command
syntax. The default name of the journal file is spss.jnl. The default location varies,
depending on your operating system. Both the name and location of the journal file
are displayed on the General tab in the Options dialog box (Edit menu, Options).

Running SPSS Commands

Once you have a set of commands, you can run the commands in a number of ways:

Highlight the commands that you want to run in a command syntax window and
click the Run button.

Invoke one command file from another with the INCLUDE or INSERT command.
For more information, see “Using INSERT with a Master Command Syntax File”
on p. 20.

Use the Production Facility to create production jobs that can run unattended and
even start unattended (and automatically) using common scheduling software. See
the Help system for more information about the Production Facility.

Use SPSSB (available only with the server version) to run command files from a
command line and automatically route results to different output destinations in
different formats. See the SPSSB documentation supplied with the SPSS server
software for more information.

7

Best Practices and Efficiency Tips

Figure 2-1

Command syntax pasted from a dialog box

B Syntax1 - SPSS Syntax Editor | =]
Eile Edit Wiew Data Transform Agnalyze Graphs Utilities Run Add-ons Window Help
FREQUEMNCIES

WARIABLES=marital
/BARCHART PERCENT
{ORDER= ANALYSIS .

Syntax Rules

B Commands run from a command syntax window during a typical SPSS session
must follow the interactive command syntax rules.

® Commands files run via SPSSB or invoked via the INCLUDE command must
follow the batch command syntax rules.

Interactive Rules

The following rules apply to command specifications in interactive mode:

B Each command must start on a new line. Commands can begin in any column
of a command line and continue for as many lines as needed. The exception is
the END DATA command, which must begin in the first column of the first line
after the end of data.

B Each command should end with a period as a command terminator. It is best to
omit the terminator on BEGIN DATA, however, so that inline data is treated as
one continuous specification.

B The command terminator must be the last non-blank character in a command.

B In the absence of a period as the command terminator, a blank line is interpreted as
a command terminator.

8

Chapter 2

Note: For compatibility with other modes of command execution (including command
files run with INSERT or INCLUDE commands in an interactive session), each line of
command syntax should not exceed 256 bytes.

Batch Rules

The following rules apply to command specifications in batch or production mode:

B All commands in the command file must begin in column 1. You can use plus
(+) or minus (—) signs in the first column if you want to indent the command
specification to make the command file more readable.

® If multiple lines are used for a command, column 1 of each continuation line must
be blank.

B Command terminators are optional.

B A line cannot exceed 256 bytes; any additional characters are truncated.

Customizing the Programming Environment

There are a few global settings and customization features that may make working with
command syntax a little easier.

Displaying Commands in the Log

By default, commands that have been run are not displayed in the log, which can
make it difficult to interpret error messages. To display commands in the log, use
the command:

SET PRINTBACK = ON.

Or, using the graphical user interface:
» From the menus, choose:
Edit
Options...
» Click the Viewer tab.

» Select (check) Display commands in the log.

9

Best Practices and Efficiency Tips

Figure 2-2
Log with and without commands displayed

Log without comcahnds displayed

>Error # 4285 in coluwn 16. Text: oldvarl

FIncorrect variable name: either the nawe is wore thah 64 characters, or it
¥iz not defined by a previous comwand.

#This command not executed.

Log with commands displayed

RECODE salarvy
(Lo THRU 25000=1) (LC THRU 50000=2)
(LD THRU 75000=3) (75000 THRU HI=4)
(ELSE=COPY] INTO salcat.

COMPUTE constant=1.

COMPUTE newvar=oldvarl+l.

*Error # 4285 in colwwn 16. Text: oldvarl

>Incorrect wvarishle name: either the nawe is more than 64 characters, or it
+is not defined by a previous cormwand.

>Thiz command not executed.

SORT CASES BY gender.
SAVE OUTFILE='c:'\tewp'tempdata.sav'.

Displaying the Status Bar in Command Syntax Windows

In addition to various status messages, the status bar at the bottom of a command
syntax window displays the current line number and character position within the line.
Since error messages typically contain information about the column position where
an error was encountered, the column position information in the status bar can help
you to pinpoint errors. (Note: You may have to increase the width of the command
syntax window to see this information.)

The status bar is displayed by default. If it is currently not displayed, choose Status
Bar from the View menu in the command syntax window.

10

Chapter 2
Figure 2-3
Status bar in command syntax window with current line number and column position
displayed
2 Syntax1 - SPSS Syntax Editor E]@

File Edit wiew Data Transform Analyze Graphs Utlities Run Add-ons window Help
EHE T & EH=h A& » @ 7

RECZCODE salary
(LO THRU 25000=1} (LO THRU S0000=2)
(LO THRU 75000=3) {75000 THRU HI=4)
(ELSE=COPY) INTO salcat

COMPUTE constant=1.

COMPUTE newwar=oldvar1+1.

SORT CASES BY gender.

SAVE OUTFILE="c\tempitempdata sav'.

SPSS Processor is ready Ln& Col 16

Protecting the Original Data

The original data file should be protected from modifications that may alter or delete
original variables and/or cases. If the original data are in an external file format (for
example, text, Excel, or database), there is little risk of accidentally overwriting the
original data while working in SPSS. However, if the original data are in SPSS-format
data files (.sav), there are many transformation commands that can modify or destroy
the data, and it is not difficult to inadvertently overwrite the contents of an SPSS-format
data file. Overwriting the original data file may result in a loss of data that cannot

be retrieved.

There are several ways in which you can protect the original data, including:
m Storing a copy in a separate location, such as on a CD, that can’t be overwritten.

m Using the operating system facilities to change the read-write property of the file
to read-only. If you aren’t familiar with how to do this in the operating system,
you can choose Mark File Read Only from the File menu or use the PERMISSIONS
subcommand on the SAVE command.

The ideal situation is then to load the original (protected) data file into SPSS and do
all data transformations, recoding, and calculations using SPSS. The objective is to
end up with one or more command syntax files that start from the original data and
produce the required results without any manual intervention.

1

Best Practices and Efficiency Tips

Do Not Overwrite Original Variables

It is often necessary to recode or modify original variables, and it is good practice to
assign the modified values to new variables and keep the original variables unchanged.
For one thing, this allows comparison of the initial and modified values to verify

that the intended modifications were carried out correctly. The original values can
subsequently be discarded if required.

Example

*These commands overwrite existing variables.

COMPUTE varl=varl*2.

RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2).

*These commands create new variables.

COMPUTE varl_new=varl*2.

RECODE var2 (1 thru 5 = 1) (6 thru 10 = 2) (ELSE=COPY)
/INTO var2_new.

B The difference between the two COMPUTE commands is simply the substitution of
a new variable name on the left side of the equals sign.

® The second RECODE command includes the INTO subcommand, which specifies a
new variable to receive the recoded values of the original variable. ELSE=COPY
makes sure that any values not covered by the specified ranges are preserved.

Using Temporary Transformations

You can use the TEMPORARY command to temporarily transform existing variables for
analysis. The temporary transformations remain in effect through the first command
that reads the data (for example, a statistical procedure), after which the variables
revert to their original values.

Example

*temporary.sps.

DATA LIST FREE /varl var2.
BEGIN DATA

12

3 4

56

7 8

9 10

END DATA.

TEMPORARY .

12

Chapter 2

COMPUTE varl=varl+ 5.
RECODE var2 (1 thru 5=1) (6 thru 10=2).
FREQUENCIES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.
DESCRIPTIVES
/VARIABLES=varl var2
/STATISTICS=MEAN STDDEV MIN MAX.

B The transformed values from the two transformation commands that follow the
TEMPORARY command will be used in the FREQUENCIES procedure.

B The original data values will be used in the subsequent DESCRIPTIVES procedure,
yielding different results for the same summary statistics.

Under some circumstances, using TEMPORARY will improve the efficiency of a

job when short-lived transformations are appropriate. Ordinarily, the results of
transformations are written to the virtual active file for later use and eventually are
merged into the saved SPSS data file. However, temporary transformations will not
be written to disk, assuming that the command that concludes the temporary state is
not otherwise doing this, saving both time and disk space. (TEMPORARY followed by
SAVE, for example, would write the transformations.)

If many temporary variables are created, not writing them to disk could be a
noticeable saving with a large data file. However, some commands require two or more
passes of the data. In this situation, the temporary transformations are recalculated for
the second or later passes. If the transformations are lengthy and complex, the time
required for repeated calculation might be greater than the time saved by not writing
the results to disk. Experimentation may be required to determine which approach
is more efficient.

Using Temporary Variables

For transformations that require intermediate variables, use scratch (temporary)
variables for the intermediate values. Any variable name that begins with a pound
sign (#) is treated as a scratch variable that is discarded at the end of the series of
transformation commands when SPSS encounters an EXECUTE command or other
command that reads the data (such as a statistical procedure).

13

Example

*scratchvar.sps.
DATA LIST FREE / varl.

BEGIN DATA

12345
END DATA.

COMPUTE factor=1.

LOOP #tempvar=1 TO varl.

- COMPUTE factor=factor * #tempvar.
END LOOP.

EXECUTE.

Figure 2-4

Result of loop with scratch variable

Untitled - SPS5 Data Editor

File Edit “ew Data Transform Analvze Graphs Ubilities window Help

Best Practices and Efficiency Tips

M= E3

=

=

|‘| s warl |1
varl factor war var war
1 1.00 1.00
2 200 2.00
3 3.00 B.00
4 4.00 24.00
5 5.00 120,00
4 [|\ Data view £ variable view / ||| |
|SPSS Processor is ready

Y

® The loop structure computes the factorial for each value of var/ and puts the
factorial value in the variable factor.

The scratch variable #tempvar is used as an index variable for the loop structure.

For each case, the COMPUTE command is run iteratively up to the value of varl.

For each iteration, the current value of the variable factor is multiplied by the
current loop iteration number stored in #empvar.

B The EXECUTE command runs the transformation commands, after which the
scratch variable is discarded.

The use of scratch variables doesn’t technically “protect” the original data in any way,
but it does prevent the data file from getting cluttered with extraneous variables. If you
need to remove temporary variables that still exist after reading the data, you can use
the DELETE VARIABLES command to eliminate them.

14

Chapter 2

Use EXECUTE Sparingly

>

>

SPSS is designed to work with large data files (the current version can accommodate
2.15 billion cases). Since going through every case of a large data file takes time, the
software is also designed to minimize the number of times it has to read the data.
Statistical and charting procedures always read the data, but most transformation
commands (for example, COMPUTE, RECODE, COUNT, SELECT IF) do not require a
separate data pass.

The default behavior of the graphical user interface, however, is to read the data
for each separate transformation so that you can see the results in the Data Editor
immediately. Consequently, every transformation command generated from the dialog
boxes is followed by an EXECUTE command. So if you create command syntax by
pasting from dialog boxes or copying from the log or journal, your command syntax
may contain a large number of superfluous EXECUTE commands that can significantly
increase the processing time for very large data files.

In most cases, you can remove virtually all of the auto-generated EXECUTE
commands, which will speed up processing, particularly for large data files and jobs
that contain many transformation commands.

To turn off the automatic, immediate execution of transformations and the associated
pasting of EXECUTE commands:

From the menus, choose:
Edit

Options...
Click the Data tab.

Select Calculate values before used.

Lag Functions

One notable exception to the above rule is transformation commands that contain lag
functions. In a series of transformation commands without any intervening EXECUTE
commands or other commands that read the data, lag functions are calculated after
all other transformations, regardless of command order. While this might not be a
consideration most of the time, it requires special consideration in the following cases:

B The lag variable is also used in any of the other transformation commands.

15

Best Practices and Efficiency Tips

B One of the transformations selects a subset of cases and deletes the unselected
cases, such as SELECT IF or SAMPLE.

Example

*lagfunction.sps.

*create some data.

DATA LIST FREE /varl.

BEGIN DATA

12345

END DATA.

COMPUTE var2=varl.
********************************.
*Lag without intervening EXECUTE.
COMPUTE lagvarl=LAG(varl) .
COMPUTE varl=varl*2.

EXECUTE.
********************************.
*Lag with intervening EXECUTE.
COMPUTE lagvar2=LAG(var2) .

EXECUTE.
COMPUTE var2=var2*2.
EXECUTE.
Figure 2-5
Results of lag functions displayed in Data Editor
[=] Untitled - SPSS Data Editor | _ (O] x|
Eile Edit Wiew Data Transform Analyze Graphs Utiities Window Help
|? s varl |
varl vars lagpar] lagvar2 war ﬂ
1 2.00 2.00 . .
2 4.00 4.00 200 1.00
3 B.00 £.00 400 200
4 8.00 8.00 F.00 3.00
5 10.00 10.00 B.00 4.00
6 -
4+ [» |\ Data view £ Variableview /|« | v

® Although varl and var2 contain the same data values, lagvarl and lagvar2 are

very different from each other.

® Without an intervening EXECUTE command, lagvarl is based on the transformed

values of varl.

16

Chapter 2

B With the EXECUTE command between the two transformation commands, the
value of lagvar2 is based on the original value of var2.

B Any command that reads the data will have the same effect as the EXECUTE
command. For example, you could substitute the FREQUENCIES command and
achieve the same result.

In a similar fashion, if the set of transformations includes a command that selects a
subset of cases and deletes unselected cases (for example, SELECT IF), lags will be
computed after the case selection. You will probably want to avoid case selection
criteria based on lag values—unless you EXECUTE the lags first.

Using SCASENUM to Select Cases

The value of the system variable $CASENUM is dynamic. If you change the sort order
of cases, the value of $CASENUM for each case changes. If you delete the first case,
the case that formerly had a value of 2 for this system variable now has the value 1.
Using the value of $CASENUM with the SELECT IF command can be a little tricky
because SELECT IF deletes each unselected case, changing the value of $CASENUM
for all remaining cases.

For example, a SELECT IF command of the general form:

SELECT IF (SCASENUM > [positive value]).

will delete all cases because, regardless of the value specified, the value of $CASENUM
for the current case will never be greater than 1. When the first case is evaluated, it has
a value of 1 for SCASENUM and is therefore deleted because it doesn’t have a value
greater than the specified positive value. The erstwhile second case then becomes the
first case, with a value of 1, and is consequently also deleted, and so on.

The simple solution to this problem is to create a new variable equal to the original
value of SCASENUM. However, command syntax of the form:

COMPUTE CaseNumber=$CASENUM.
SELECT IF (CaseNumber > [positive value]).

will still delete all cases because each case is deleted before the value of the new
variable is computed. The correct solution is to insert an EXECUTE command between
COMPUTE and SELECT IF, as in:

COMPUTE CaseNumber=$CASENUM.

17

Best Practices and Efficiency Tips

EXECUTE.
SELECT IF (CaseNumber > [positive value]).

MISSING VALUES Command

If you have a series of transformation commands (for example, COMPUTE, IF, RECODE)
followed by a MISSING VALUES command that involves the same variables, you
may want to place an EXECUTE statement before the MISSING VALUES command.
This is because the MISSING VALUES command changes the dictionary before the
transformations take place.

Example

IF (x = 0) y = z*2.
MISSING VALUES x (0).

The cases where x = 0 would be considered user-missing on x, and the transformation
of y would not occur. Placing an EXECUTE before MISSING VALUES allows the
transformation to occur before 0 is assigned missing status.

WRITE and XSAVE Commands

In some circumstances, it may be necessary to have an EXECUTE command after a
WRITE or an XSAVE command. For more information, see “Using XSAVE in a Loop to
Build a Data File” in Chapter 8 on p. 156.

Using Comments

It is always a good practice to include explanatory comments in your code. In SPSS,
you can do this in several ways:

COMMENT Get summary stats for scale variables.
* An asterisk in the first column also identifies comments.
FREQUENCIES
VARIABLES=income ed reside
/FORMAT=LIMIT(10) /*avoid long frequency tables
/STATISTICS=MEAN /*arithmetic average*/ MEDIAN.
* A macro name like !mymacro in this comment may invoke the macro.
/* A macro name like !mymacro in this comment will not invoke the macro*/.

18

Chapter 2

®m The first line of a comment can begin with the keyword COMMENT or with an
asterisk (*).

® Comment text can extend for multiple lines and can contain any characters.
The rules for continuation lines are the same as for other commands. Be sure
to terminate a comment with a period.

m Use /* and */ to set off a comment within a command.

B The closing */is optional when the comment is at the end of the line. The command
can continue onto the next line just as if the inserted comment were a blank.

B To ensure that comments that refer to macros by name don’t accidently invoke
those macros, use the /* [comment text] */ format.

Using SET SEED to Reproduce Random Samples or Values

When doing research involving random numbers—for example, when randomly
assigning cases to experimental treatment groups—you should explicitly set the
random number seed value if you want to be able to reproduce the same results.

The random number generator is used by the SAMPLE command to generate random
samples and is used by many distribution functions (for example, NORMAL, UNIFORM)
to generate distributions of random numbers. The generator begins with a seed, a large
integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file. At the
start of each session, the seed is set to a value that may vary or may be fixed, depending
on your current settings. The seed value changes each time a series of transformations
contains one or more commands that use the random number generator.

Example

To repeat the same random distribution within a session or in subsequent sessions, use
SET SEED before each series of transformations that use the random number generator
to explicitly set the seed value to a constant value.

*set_seed.sps.

GET FILE = 'c:\examples\datal\onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

GET FILE = 'c:\examples\data\onevar.sav'.
SET SEED = 123456789.

SAMPLE .1.

LIST.

19

Best Practices and Efficiency Tips

m Before the first sample is taken the first time, the seed value is explicitly set with
SET SEED.

B The L.IST command causes the data to be read and the random number generator
to be invoked once for each original case. The result is an updated seed value.

B The second time the data file is opened, SET SEED sets the seed to the same value
as before, resulting in the same sample of cases.

® Both SET SEED commands are required because you aren’t likely to know what
the initial seed value is unless you set it yourself.

Note: This example opens the data file before each SAMPLE command because
successive SAMPLE commands are cumulative within the active dataset.

SET SEED versus SET MTINDEX

SPSS provides two random number generators, and SET SEED sets the starting value
for only the default random number generator (SET RNG=MC). If you are using the
newer Mersenne Twister random number generator (SET RNG=MT), the starting value
is set with SET MTINDEX.

Divide and Conquer

A time-proven method of winning the battle against programming bugs is to split the
tasks into separate, manageable pieces. It is also easier to navigate around a syntax file
of 200-300 lines than one of 2,000-3,000 lines.

Therefore, it is good practice to break down a program into separate stand-alone
files, each performing a specific task or set of tasks. For example, you could create
separate command syntax files to:

B Prepare and standardize data.
B Merge data files.

m Perform tests on data.

|

Report results for different groups (for example, gender, age group, income
category).

20

Chapter 2

Using the INSERT command and a master command syntax file that specifies all of the
other command files, you can partition all of these tasks into separate command files.

Using INSERT with a Master Command Syntax File

The INSERT command provides a method for linking multiple syntax files together,
making it possible to reuse blocks of command syntax in different projects by using a
“master” command syntax file that consists primarily of INSERT commands that refer
to other command syntax files.

Example

INSERT FILE
INSERT FILE
INSERT FILE
INSERT FILE

"c:\examples\data\prepare data.sps" CD=YES.
"combine data.sps".

"do tests.sps".

"report groups.sps".

® FEach INSERT command specifies a file that contains SPSS command syntax.

B By default, inserted files are read using interactive syntax rules, and each
command should end with a period.

B The first INSERT command includes the additional specification CD=YES. This
changes the working directory to the directory included in the file specification,
making it possible to use relative (or no) paths on the subsequent INSERT
commands.

INSERT versus INCLUDE

INSERT is a newer, more powerful and flexible alternative to INCLUDE. Files included
with INCLUDE must always adhere to batch syntax rules, and command processing
stops when the first error in an included file is encountered. You can effectively
duplicate the INCLUDE behavior with SYNTAX=BATCH and ERROR=STOP on the
INSERT command.

Defining Global Settings

In addition to using INSERT to create modular master command syntax files, you
can define global settings that will enable you to use those same command files for
different reports and analyses.

21

Best Practices and Efficiency Tips

Example

You can create a separate command syntax file that contains a set of FILE HANDLE
commands that define file locations and a set of macros that define global variables
for client name, output language, and so on. When you need to change any settings,
you change them once in the global definition file, leaving the bulk of the command
syntax files unchanged.

*define_globals.sps.

FILE HANDLE data /NAME='c:\examples\data'.

FILE HANDLE commands /NAME='c:\examples\commands'.
FILE HANDLE spssdir /NAME='c:\program files\spss'.
FILE HANDLE tempdir /NAME='d:\temp'.

DEFINE !enddate ()DATE.DMY(1,1,2004) !ENDDEFINE.
DEFINE !olang()English!ENDDEFINE.

DEFINE !client()"ABC Inc"!ENDDEFINE.

DEFINE !title()TITLE !client.!ENDDEFINE.

B The first two FILE HANDLE commands define the paths for the data and command
syntax files. You can then use these file handles instead of the full paths in any
file specifications.

B The third FILE HANDLE command contains the path to the SPSS folder. This
path can be useful if you use any of the command syntax or script files that are
installed with SPSS.

B The last FILE HANDLE command contains the path of a temporary folder. It is
very useful to define a temporary folder path and use it to save any intermediary
files created by the various command syntax files making up the project. The main
purpose of this is to avoid crowding the data folders with useless files, some of
which might be very large. Note that here the temporary folder resides on the D
drive. When possible, it is more efficient to keep the temporary and main folders
on different hard drives.

B The DEFINE-!ENDDEFINE structures define a series of macros. This example uses
simple string substitution macros, where the defined strings will be substituted
wherever the macro names appear in subsequent commands during the session.

B !enddate contains the end date of the period covered by the data file. This can be
useful to calculate ages or other duration variables as well as to add footnotes to
tables or graphs.

B !olang specifies the output language.

22

Chapter 2

B !client contains the client’s name. This can be used in titles of tables or graphs.

B !title specifies a TITLE command, using the value of the macro /client as the

title text.

The master command syntax file might then look something like this:

INSERT FILE
ltitle.

INSERT FILE
INSERT FILE
INSERT FILE

"c:\examples\commands\define_globals.sps".

"data\prepare data.sps".
"commands\combine data.sps".
"commands\do tests.sps".

INCLUDE FILE = "commands\report groups.sps".

B The first INSERT runs the command syntax file that defines all of the global
settings. This needs to be run before any commands that invoke the macros
defined in that file.

B ! title will print the client’s name at the top of each page of output.

B "data" and "commands" in the remaining INSERT commands will be expanded
to "c:\examples\data" and "c:\examples\commands", respectively.

Note: Using absolute paths or file handles that represent those paths is the most reliable
way to make sure that SPSS finds the necessary files. Relative paths may not work as
you might expect, since they refer to the current working directory, which can change
frequently. You can also use the CD command or the CD keyword on the INSERT
command to change the working directory.

Chapter

3

Getting Data into SPSS

Before you can work with data in SPSS, you need some data to work with. There are
several ways to get data into the application:

B Open a data file that has already been saved in SPSS format.
® Enter data manually in the Data Editor.

m Read a data file from another source, such as a database, text data file, spreadsheet,
SAS, or Stata.

Opening an SPSS-format data file is simple, and manually entering data in the Data
Editor is not likely to be your first choice, particularly if you have a large amount
of data. This chapter focuses on how to read data files created and saved in other
applications and formats.

Getting Data from Databases

SPSS relies primarily on ODBC (open database connectivity) to read data from
databases. ODBC is an open standard with versions available on many platforms,
including Windows, UNIX, and Macintosh.

Installing Database Drivers

You can read data from any database format for which you have a database driver. In
local analysis mode, the necessary drivers must be installed on your local computer.
In distributed analysis mode (available with the Server version), the drivers must be
installed on the remote server.

ODBC database drivers for a wide variety of database formats are included on the
SPSS installation CD, including:

B Access

23

24

Chapter 3
m Btrieve
m DB2
m dJdBASE
m Excel
m FoxPro
® Informix
m Oracle
m Paradox
® Progress
m SQL Base
m SQL Server
m Sybase
Most of these drivers can be installed by installing the SPSS Data Access Pack.
You can install the SPSS Data Access Pack from the AutoPlay menu on the SPSS
installation CD.

If you need a Microsoft Access driver, you will need to install the Microsoft Data
Access Pack. An installable version is located in the Microsoft Data Access Pack
folder on the SPSS installation CD.

Before you can use the installed database drivers, you may also need to configure
the drivers using the Windows ODBC Data Source Administrator. For the SPSS Data
Access Pack, installation instructions and information on configuring data sources are
located in the Installation Instructions folder on the SPSS installation CD.

OLE DB

Starting with SPSS 14.0, some support for OLE DB data sources is provided.

To access OLE DB data sources, you must have the following items installed on the
computer that is running SPSS:

®m . NET framework
B Dimensions Data Model and OLE DB Access

Versions of these components that are compatible with this release of SPSS can be
installed from the SPSS installation CD and are available on the AutoPlay menu.

25

Getting Data into SPSS

m Table joins are not available for OLE DB data sources. You can read only one
table at a time.

B You can add OLE DB data sources only in local analysis mode. To add OLE
DB data sources in distributed analysis mode on a Windows server, consult your
system administrator.

®m In distributed analysis mode (available with SPSS Server), OLE DB data sources
are available only on Windows servers, and both .NET and the Dimensions Data
Model and OLE DB Access must be installed on the server.

Database Wizard

It’s probably a good idea to use the Database Wizard (File menu, Open Database) the
first time you retrieve data from a database source. At the last step of the wizard, you
can paste the equivalent commands into a command syntax window. Although the
SQL generated by the wizard tends to be overly verbose, it also generates the CONNECT
string, which you might never figure out without the wizard.

Reading a Single Database Table

SPSS reads data from databases by reading database tables. You can read information
from a single table or merge data from multiple tables in the same database. A single
database table has basically the same two-dimensional structure as an SPSS data file:
records are cases and fields are variables. So, reading a single table can be very simple.

Example

This example reads a single table from an Access database. It reads all records and
fields in the table.

*accessl.sps.
GET DATA /TYPE=0ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL = 'SELECT * FROM CombinedTable'.
EXECUTE.

®m The GET DATA command is used to read the database.

26

Chapter 3

Untitled - 5P55 Data Editor
File Edit “iew Data Transform Analwze Graphs

TYPE=0DBC indicates that an ODBC driver will be used to read the data. This is
required for reading data from any database, and it can also be used for other data
sources with ODBC drivers, such as Excel workbooks. For more information, see
“Reading Multiple Worksheets” on p. 33.

CONNECT identifies the data source. For this example, the CONNECT string was
copied from the command syntax generated by the Database Wizard. The entire
string must be enclosed in single or double quotes. In this example, we have split
the long string onto two lines using a plus sign (+) to combine the two strings.

The sSQL subcommand can contain any SQL statements supported by the database
format. Each line must be enclosed in single or double quotes.

SELECT * FROM CombinedTable reads all of the fields (columns) and all
records (rows) from the table named CombinedTable in the database.

Any field names that are not valid SPSS variable names are automatically
converted to valid variable names, and the original field names are used as variable
labels. In this database table, many of the field names contain spaces, which are
removed in the variable names.

Figure 3-1
Database field names converted to valid variable names

Utilitiez Add-onz wWindow Help

=|@|8| B| o|c| =kl Ee BlEE 5ol

Marme Type Width | Decimals Label ﬂ

1|10 MNumeric 1 0

2| Age MNumeric g 2

3| MaritalStatus MNumeric g 2 Marital Status
4]Income MNumeric g 2

a|IncomeCategory MNumeric g 2 Income Category

B Car MNumeric g 2

7| CarCategary MNumeric g 2 Car Category

8| Education MNumeric g 2

4 [+ [\, Data view } Variable iew f

<]

I
5P5S Processor is ready

&I_I*_

Example

Now we’ll read the same database table—except this time, we’ll read only a subset of
fields and records.

27

Getting Data into SPSS

*access2.sps.

GET DATA /TYPE=0ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'SELECT Age, Education, [Income Categoryl]'
' FROM CombinedTable'
' WHERE ([Marital Status] <> 1 AND Internet = 1)'.

EXECUTE.

m The SELECT clause explicitly specifies only three fields from the file; so, the active
dataset will contain only three variables.

® The WHERE clause will select only records where the value of the Marital Status
field is not 1 and the value of the Internet field is 1. In this example, that means
only unmarried people who have Internet service will be included.

Two additional details in this example are worth noting:

® The field names Income Category and Marital Status are enclosed in brackets.
Since these field names contain spaces, they must be enclosed in brackets or
quotes. Since single quotes are already being used to enclose each line of the SQL
statement, the alternative to brackets here would be double quotes.

B We’ve put the FROM and WHERE clauses on separate lines to make the code easier
to read; however, in order for this command to be read properly, each of those lines
also has a blank space between the starting single quote and the first word on the
line. When the command is processed, all of the lines of the SQL statement are
merged together in a very literal fashion. Without the space before WHERE, the
program would attempt to read a table named CombinedTableWhere, and an error
would result. As a general rule, you should probably insert a blank space between
the quotation mark and the first word of each continuation line.

Reading Multiple Tables

You can combine data from two or more database tables by “joining” the tables. The
active dataset can be constructed from more than two tables, but each “join” defines a
relationship between only two of those tables:

® Inner join. Records in the two tables with matching values for one or more specified
fields are included. For example, a unique ID value may be used in each table, and
records with matching ID values are combined. Any records without matching
identifier values in the other table are omitted.

28

Chapter 3

m Left outer join. All records from the first table are included regardless of the criteria
used to match records.

m Right outer join. Essentially the opposite of a left outer join. So, the appropriate
one to use is basically a matter of the order in which the tables are specified in the
SQL SELECT clause.

Example

In the previous two examples, all of the data resided in a single database table. But
what if the data were divided between two tables? This example merges data from two
different tables: one containing demographic information for survey respondents and
one containing survey responses.

*access_multtablesl.sps.
GET DATA /TYPE=0ODBC /CONNECT=
'DSN=MS Access Database;DBQ=C:\examples\data\dm_demo.mdb; '+
'DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"
/SQL =
'"SELECT * FROM DemographicInformation, SurveyResponses'
' WHERE DemographicInformation.ID=SurveyResponses.ID'.
EXECUTE.

m The SELECT clause specifies all fields from both tables.

B The WHERE clause matches records from the two tables based on the value of the
ID field in both tables. Any records in either table without matching /D values in
the other table are excluded.

® The result is an inner join in which only records with matching /D values in both
tables are included in the active dataset.

Example

In addition to one-to-one matching, as in the previous inner join example, you can also
merge tables with a one-to-many matching scheme. For example, you could match
a table in which there are only a few records representing data values and associated
descriptive labels with values in a table containing hundreds or thousands of records
representing survey respondents.

In this example, we read data from an SQL Server database, using an outer join to
avoid omitting records in the larger table that don’t have matching identifier values in
the smaller table.

29

Getting Data into SPSS

*sglserver_outer_join.sps.
GET DATA /TYPE=0ODBC
/CONNECT= 'DSN=SQLServer;UID=;APP=SPSS For Windows;'
'WSID=ROLIVERLAP; Network=DBMSSOCN; Trusted_Connection=Yes'
/SQL =
'SELECT SurveyResponses.ID, SurveyResponses.Internet, '
' [Value Labels].[Internet Labell]'
' FROM SurveyResponses LEFT OUTER JOIN [Value Labels]'
' ON SurveyResponses.Internet'
' = [Value Labels].[Internet Value]'.

Figure 3-2
SQL Server tables to be merged with outer join

'i'ﬁ Z:Data in Table "SurveyResponses’ in "sql_server_dem... [Ei[=] [E3

B EwE f) kY2 A KE| %W
D [wireless [Mulkline [Woice [Pager [internet =

|1 0 1 1 1 0

WE 1 a 1 1 0

NE a a 0 0 0

|4 0 0 0 0 0

s a 1 0 0 1

e 1 1 0 0 1

— ; é 'Hi 3:Data in Table 'Value Labels® in *sql_sery... [H[=] [E3
oo =] — el O A
I EE i o] [Internet value [Internet Label [
[« | 1 i Mo

| Z 1 es

e
a =

30

Chapter 3

Figure 3-3
Active dataset in SPSS
[=] Untitled - SPSS Data Editor _[O]
File Edit “iew Data Transform Analvze Graphs Utilities Window Help
RS B o] B =|k] sl Fe=| Bla(E 3
|‘IS: Internet_Label |N0
1D Internet | Internet Lahel var i A
1 1 0|ko j
2 2 0|ko
3 3 0|ko
4 4 0|ko
5 = 1[¥es
B B 1[¥es
7 7 0|Mo
a 8 0|Mo
9 9 9
10 10 0|Mo -
|4 [+ |\ Data view 4 Variable View / || 4] _)I_I
SPSS Processor is ready 4

FROM SurveyResponses LEFT OUTER JOIN [Value Labels] will include
all records from the table SurveyResponses even if there are no records in the Value
Labels table that meet the matching criteria.

ON SurveyResponses.Internet = [Value Labels].[Internet
vValue] matches records based on the value of the field Internet in the table
SurveyResponses and the value of the field Internet Value in the table Value Labels.

The resulting active dataset has an Internet Label value of No for all cases with a
value of O for Internet and Yes for all cases with a value of 1 for Internet.

Since the left outer join includes all records from SurveyResponses, there are cases
in the active dataset with values of 8 or 9 for Internet and no value (a blank string)
for Internet Label, since the values of 8 and 9 do not occur in the Internet Value
field in the table Value Labels.

Reading Excel Files

SPSS can read individual Excel worksheets and multiple worksheets in the same
Excel workbook. The basic mechanics of reading Excel files are relatively
straightforward—rows are read as cases and columns are read as variables. However,
reading a typical Excel spreadsheet—where the data may not start in row 1,

31

Getting Data into SPSS

column 1—requires a little extra work, and reading multiple worksheets requires
treating the Excel workbook as a database. In both instances, we can use the GET
DATA command to read the data into SPSS.

Reading a “Typical” Worksheet

When reading an individual worksheet, SPSS reads a rectangular area of the worksheet,
and everything in that area must be data related. The first row of the area may or may
not contain variable names (depending on your specifications); the remainder of the
area must contain the data to be read. A typical worksheet, however, may also contain
titles and other information that may not be appropriate for an SPSS data file and may
even cause the data to be read incorrectly if you don’t explicitly specify the range of
cells to read.

Example
Figure 3-4
Typical Excel worksheet
Ed Microsoft Excel - sales.xls [_ O] =]
J File Edit Wiew Insert Format Tools Data Window Help Acrobak ;lillﬂ
DeEa @Ry RS oo @ = A& 8 4| ild o -0,
B24 | =]
A | B [T | D | e [F T & [H [1 [4 [
| 1] Gross Revenue (in thousands) —
Store
| 2 |Number State Region Housewares Tools Auto Clothing Toys Food Total
| 3 | REN Midwest | § 27§ 36 | § a0 | % 18 & 5% 4% 140
| 4 | 104 Ml Midwest | § 37§ 46 | § 49 | 5 30§ 7% 6§ 175
| 5 | 180 MY East § 40 § 335 30§ 1M % 9% 123
| 6 | 54 CA YWWest § 26§ 34§ 415 26§ 12§ 10 % 149
| 7| 186 GA South § 28 | § 34§ 21 % 16 | MA 5 10 % 109
| 5 | 153 WA, YWWest § 35§ 95 | § 23 | 5 23§ 12§ 4% 155
=N 105 WA East 5 250§ 300§ 19 % 110§ 9§ 9% 101
| 10| 172 0R YWWest § 29 | § 27§ a0 | % 22 % 1M % g% 147
| 11| 17114 Midwest | § 3= 0§ 35§ a3 % 19§ 1§ 5 % 159
|12 | 178 ME East § 37§ 26§ 31 % 14§ 14§ 3% 125
113 | o7 A7 West 5 2508 45 % EraR 19§ 7% 3% 129
| 14 | 105 Rl East § 20 % 26§ 17 % 10 % g % 6§ 87 =
| 15 | 107 WYl Midwest | § 23 | § 46 | § 21 % 30§ 12§ 5% 137
| 16 | Total § 394 5 444§ 434§ 263§ 119 § 82 § 1736
17 hd
14 | 4[» [Gross Revenue ;{ Location Todls £ &uta / |« | _>|JJ
Ready Calculate | [2

32

Chapter 3

To read this spreadsheet without the title row or total row and column:

*readexcel.sps.

GET DATA
/TYPE=XLS
/FILE="'c:\examples\data\sales.xls'
/SHEET=NAME 'Gross Revenue'
/CELLRANGE=RANGE 'A2:I15"'
/READNAMES=0on

m The TYPE subcommand identifies the file type as Excel, version 5 or later. (For
earlier versions, use GET TRANSLATE.)

® The SHEET subcommand identifies which worksheet of the workbook to read.
Instead of the NAME keyword, you could use the INDEX keyword and an integer
value indicating the sheet location in the workbook. Without this subcommand,
the first worksheet is read.

B The CELLRANGE subcommand indicates that SPSS should start reading at column
A, row 2, and read through column /7, row 15.

® The READNAMES subcommand indicates that the first row of the specified range
contains column labels to be used as variable names.

Figure 3-5

Excel worksheet read into SPSS

B *Untitled10 [] - SPSS Data Editor =)<

File Edit Wiew Data Transform Analyze Graphs Utilities Add-ons Window Help

16 : StoreMumber
StoreMumber | State | Region | Housewares| Tools | Aute | Clothing | Toys | Food | A&

1 119/IL Midwest 527 $36 $a0 §158 %5 54
2 104 |MI Midwest $a7 FEL] F49 §30 57 4}
3 180 | MY East 540 . $33 $30 511 $9
4 B4 |CA |West 526 $34 F41 $26 512 $10
5 186|GA | South 528 §34 521 F16| MA $10
B 153 WA |West 5§38 $55 $23 §23 512 54
7 108 |MA East 525 $30 §18 $10/%9 $9
8 172/0R |West 524 527 $a0 522511 =]
9 171 |1A Midwest $39 §36 $a3 15511 fa)
10 178/ME | East §37 §26 §31 §14 514 53
11 97 |AL West 525 §45 27 #1957 53
12 105|RI East 520 §26 §17 $10 %8 5]
13 107 Wl Midwest 523 $46 521 $30 512]
14
15 [

< » '\ Data View £ variable View f |< >

33

Getting Data into SPSS

m The Excel column label Store Number is automatically converted to the SPSS
variable name StoreNumber, since variable names cannot contain spaces. The
original column label is retained as the variable label.

m The original data type from Excel is preserved whenever possible, but since data
type is determined at the individual cell level in Excel and at the column (variable)
level in SPSS, this isn’t always possible.

® When SPSS encounters mixed data types in the same column, the variable is

assigned the string data type; so, the variable Toys in this example is assigned
the string data type.

READNAMES Subcommand

The READNAMES subcommand tells SPSS to treat the first row of the spreadsheet or
specified range as either variable names (ON) or data (OFF). This subcommand will

always affect the way the Excel spreadsheet is read, even when it isn’t specified, since
the default setting is ON.

® With READNAMES=O0N (or in the absence of this subcommand), if the first row
contains data instead of column headings, SPSS will attempt to read the cells in
that row as variable names instead of as data—alphanumeric values will be used

to create variable names, numeric values will be ignored, and default variable
names will be assigned.

® With READNAMES=0FF, if the first row does, in fact, contain column headings or
other alphanumeric text, then those column headings will be read as data values,
and all of the variables will be assigned the string data type.

Reading Multiple Worksheets

An Excel file (workbook) can contain multiple worksheets, and you can read multiple
worksheets from the same workbook by treating the Excel file as a database. This
requires an ODBC driver for Excel.

34

Chapter 3
Figure 3-6
Multiple worksheets in same workbook
A |8 | © | ED
1 |Store Murnber State Region City
2 | NN Midwest | Chicago
3| 104 MI & c | o | ET
4 180 NY
5 G4 Cca 1 |Stare Number Power Hand Accessories
B | 166|GA |2 119 g 5 1
7 153 WA 3 | 104 g A B | ¢ | D E =
8 106 W4 (4 | 180 |
g | 17200 | & G4 g 1 |Store Mumber Tires Batteries | Gizmos Dohickey
0| 17114 B | 186 5.2 B4 1 7 4
1| 176/ ME _7 | 153 B3 97 9 2 2
12 57 A7 1B | 108 5.4 | 104 7] 4
13 105R 9| 172 5.8 105 5 8 3
14 107 vyl 10 171 106 107 7 2 2
=T 11 178 5 7 105 1 3 4
4] 4 : : » Location 1_ o7 BE 119 3 = 4
EE 105 5.9 153 7 5 1
14 | 107 510 171 2 3 4 | |
I DI Location), Tools 172 3 6 !
12 178 10 7 1
13 180 4 &l 4
1 186 &3 G 3

When reading multiple worksheets, you lose some of the flexibility available for
reading individual worksheets:

You cannot specify cell ranges.

18
M 4[» [M[{ Location £ Took s Auto /|4 |

r

The first non-empty row of each worksheet should contain column labels that

will be used as variable names.

Only basic data types—string and numeric—are preserved, and string variables
may be set to an arbitrarily long width.

Example

In this example, the first worksheet contains information about store location, and the
second and third contain information for different departments. All three contain a
column, Store Number, that uniquely identifies each store, so, the information in the
three sheets can be merged correctly regardless of the order in which the stores are
listed on each worksheet.

35

Getting Data into SPSS

*readexcel2.sps.
GET DATA
/TYPE=0ODBC
/CONNECT=
'DSN=Excel Files;DBQ=c:\examples\data\sales.xls;' +
'DriverId=790;MaxBufferSize=2048; PageTimeout=5; "'
/SQL =
'SELECT Location$.[Store Number], State, Region, City,'
' Power, Hand, Accessories,'
Tires, Batteries, Gizmos, Dohickeys'
FROM [Location$], [ToolsS$], [AutoS$]'
WHERE [Tools$].[Store Number]=[Location$].[Store Number]'
AND [AutoS].[Store Number]=[Location$].[Store Number]'.

m If these commands look like random characters scattered on the page to you, try

using the Database Wizard (File menu, Open Database) and, in the last step, paste
the commands into a syntax window.

® Even if you are familiar with SQL statements, you may want to use the Database
Wizard the first time to generate the proper CONNECT string.

B The SELECT statement specifies the columns to read from each worksheet, as
identified by the column headings. Since all three worksheets have a column
labeled Store Number, the specific worksheet from which to read this column
is also included.

m If the column headings can’t be used as variable names, you can either let SPSS
automatically create valid variable names or use the AS keyword followed by a
valid variable name. In this example, Store Number is not a valid SPSS variable
name; so, a variable name of StoreNumber is automatically created, and the
original column heading is used as the variable label.

m The FROM clause identifies the worksheets to read.

® The WHERE clause indicates that the data should be merged by matching the values
of the column Store Number in the three worksheets.

36

Chapter 3

Figure 3-7

Merged worksheets in SPSS

® *Untitleds [] - SPSS Data Editor ==

File Edit “iew Data Transform Analyze Graphs Utlities Add-ons Window Help

18 : StoreMumber
StnreNumber| State | Region | City | Power | Hand | ALC A

1 54.00 |CA West Los Angeles g.00 2.00
2 97.00 AL WWast Tucson 9.00 2.00
3 104.00 | kI Mlichwe st Dietrait 5.00 4.00
4 105.00 |RI East Providence 5.00 5.00
5 107.00 W Mlichwe st Madison B.00 3.00
B 108.00 | hA East Boston 5.00 2.00
7 119.00 1L Michwe st Chicago 9.00 5.00
g 153.00 VWA West Seattle 5.00 4.00
&l 171.00 |14 Mlicwe 5t Des Moines 10.00 4.00
10 172.00 OR WWest Eugene 5.00 3.00
11 175.00 | ME East Bangor B.00 2.00
12 180.00 MY East Albany . . -

4 v \DataView £ variable view f |< >]

SPS5S Processar is ready

Reading Text Data Files

A text data file is simply a text file that contains data. Text data files fall into two
broad categories:

m Simple text data files, in which all variables are recorded in the same order for all
cases, and all cases contain the same variables. This is basically how all data files
appear once they are read into SPSS.

m Complex text data files, including files in which the order of variables may vary
between cases and hierarchical or nested data files in which some records contain
variables with values that apply to one or more cases contained on subsequent
records that contain a different set of variables (for example, city, state, and street
address on one record and name, age, and gender of each household member
on subsequent records).

Text data files can be further subdivided into two more categories:

m Delimited. Spaces, commas, tabs, or other characters are used to separate variables.
The variables are recorded in the same order for each case but not necessarily in
the same column locations. This is also referred to as freefield format. Some

37

Getting Data into SPSS

applications export text data in comma-separated values (CSV) format; this is a
delimited format.

m Fixed width. Each variable is recorded in the same column location on the same
line (record) for each case in the data file. No delimiter is required between values.
In fact, in many text data files generated by computer programs, data values may
appear to run together without even spaces separating them. The column location
determines which variable is being read.

Complex data files are typically also fixed-width format data files.

Simple Text Data Files

In most cases, the Text Wizard (File menu, Read Text Data) provides all of the
functionality that you need to read simple text data files. You can preview the original
text data file and resulting SPSS data file as you make your choices in the wizard,
and you can paste the command syntax equivalent of your choices into a command
syntax window at the last step.

Two commands are available for reading text data files: GET DATA and DATA
LIST. In many cases, they provide the same functionality, and the choice of one versus
the other is a matter of personal preference. In some instances, however, you may need
to take advantage of features in one command that aren’t available in the other.

GET DATA

Use GET DATA instead of DATA LIST if:
B The file is in CSV format.

B The text data file is very large.

DATA LIST

Use DATA LIST instead of GET DATA if:

m The text data is “inline” data contained in a command syntax file using BEGIN
DATA-END DATA.

m The file has a complex structure, such as a mixed or hierarchical structure. For
more information, see “Reading Complex Text Data Files” on p. 49.

B You want to use the TO keyword to define a large number of sequential variable
names (for example, varl TO var1000).

38

Chapter 3

Many examples in other chapters use DATA LIST to define sample data simply
because it supports the use of inline data contained in the command syntax file rather
than in an external data file, making the examples self-contained and requiring no
additional files to work.

Delimited Text Data

In a simple delimited (or “freefield”) text data file, the absolute position of each
variable isn’t important; only the relative position matters. Variables should be
recorded in the same order for each case, but the actual column locations aren’t
relevant. More than one case can appear on the same record, and some records can
span multiple records, while others do not.

Example

One of the advantages of delimited text data files is that they don’t require a great deal
of structure. The sample data file, simple_delimited.txt, looks like this:

8
4

122122 £2921212
532145 128m17 11

o
o
ows
NN

The DATA LIST command to read the data file is:

*simple_delimited.sps.
DATA LIST FREE

FILE = 'c:\examples\data\simple_delimited.txt'

/id (F3) sex (Al) age (F2) opinionl TO opinion5 (5F).
EXECUTE.

B FREE indicates that the text data file is a delimited file, in which only the order of
variables matters. By default, commas and spaces are read as delimiters between
data values. In this example, all of the data values are separated by spaces.

m FEight variables are defined; so, after reading eight values, the next value is read
as the first variable for the next case, even if it’s on the same line. If the end of
a record is reached before eight values have been read for the current case, the
first value on the next line is read as the next value for the current case. In this
example, four cases are contained on three records.

39

Getting Data into SPSS

m [f all of the variables were simple numeric variables, you wouldn’t need to specify
the format for any of them, but if there are any variables for which you need to
specify the format, any preceding variables also need format specifications. Since
you need to specify a string format for sex, you also need to specify a format for id.

m In this example, you don’t need to specify formats for any of the numeric variables
that appear after the string variable, but the default numeric format is F8.2, which
means that values are displayed with two decimals even if the actual values are
integers. (F2) specifies an integer with a maximum of two digits, and (5F)
specifies five integers, each containing a single digit.

The “defined format for all preceding variables” rule can be quite cumbersome,
particularly if you have a large number of simple numeric variables interspersed with a
few string variables or other variables that require format specifications. You can use a
shortcut to get around this rule:

DATA LIST FREE
FILE = 'c:\examples\data\simple_delimited.txt'
/id * sex (Al) age opinionl TO opinionb5.

The asterisk indicates that all preceding variables should be read in the default numeric
format (F8.2). In this example, it doesn’t save much over simply defining a format
for the first variable, but if sex were the last variable instead of the second, it could

be useful.

Example

One of the drawbacks of DATA LIST FREE is that if a single value for a single case
is accidently missed in data entry, all subsequent cases will be read incorrectly, since
values are read sequentially from the beginning of the file to the end regardless of what
line each value is recorded on. For delimited files in which each case is recorded on a
separate line, you can use DATA LIST LIST, which will limit problems caused by
this type of data entry error to the current case.

The data file, delimited_list.txt, contains one case that has only seven values
recorded, whereas all of the others have eight:

00l m 2812212
002 £29 21212
003 £ 45 3 2 4 5

128 m 17 1119 4

40

Chapter 3

The pATA LIST command to read the file is:

*delimited_list.sps.

DATA LIST LIST
FILE='c:\examples\data\delimited_ list.txt'
/id(F3) sex (Al) age opinionl TO opinion5 (6F1).

EXECUTE.
Figure 3-8
Text data file read with DATA LIST LIST
=] Untitled - SPSS Data Editor H=] E3
File Edit Wiew Data Transform Analyze Graphs Utilities Window Help
=|@|S8| B o|~| Bl =]k o Fle=| Blk|FE] %2
|B sid |
id | sex | age | opinionl | opinionZ | opiniond) apiniond| apinions ﬂ
1 1{m 28 1 2 2 1 2
2 21f] 2 1 2 1 2
3 3If 45 3 2 4 5 .
41 128|m 17 1 1 1 9 4
5 -
4 | » [\ Data View £ variable Yiew [I« | 3|
|SPS5 Processor is ready [v

Eight variables are defined; so, eight values are expected on each line.

The third case, however, has only seven values recorded. The first seven values
are read as the values for the first seven defined variables. The eighth variable
is assigned the system-missing value.

You don’t know which variable for the third case is actually missing. In this example,
it could be any variable after the second variable (since that’s the only string variable,
and an appropriate string value was read), making all of the remaining values for
that case suspect; so, a warning message is issued whenever a case doesn’t contain
enough data values:

>Warning # 1116

>Under LIST input, insufficient data were contained on one record to
>fulfill the variable list.

>Remaining numeric variables have been set to the system-missing
>value and string variables have been set to blanks.

>Command line: 6 Current case: 3 Current splitfile group: 1

41

Getting Data into SPSS
CSV Delimited Text Files

A CSV file uses commas to separate data values and encloses values that include
commas in quotation marks. Many applications export text data in this format. To read
CSV files correctly, you need to use the GET DATA command.

Example

The file CSV_file.csv was exported from Microsoft Excel:

ID,Name, Gender,Date Hired, Department
1,"Foster, Chantal",f,10/29/1998,1
"Healy, Jonathan",m,3/1/1992,3
"Walter, Wendy",f,1/23/1995,2

2
3
4,"0liver, Kendall",f,10/28/2003,2

This data file contains variable descriptions on the first line and a combination of string
and numeric data values for each case on subsequent lines, including string values that
contain commas. The GET DATA command syntax to read this file is:

*delimited_csv.sps.
GET DATA /TYPE = TXT

/FILE = 'C:\examples\data\CsSv_file.csv'
/DELIMITERS = ", "

/QUALIFIER = '"'

/ARRANGEMENT = DELIMITED

/FIRSTCASE = 2

/VARIABLES = ID F3 Name Al5 Gender Al

Date_Hired ADATE10 Department F1.

B DELIMITERS = ", " specifies the comma as the delimiter between values.

B QUALIFIER = '"' specifies that values that contain commas are enclosed in
double quotes so that the embedded commas won’t be interpreted as delimiters.

B FIRSTCASE = 2 skips the top line that contains the variable descriptions;
otherwise, this line would be read as the first case.

B ADATE1O specifies that the variable Date_Hired is a date variable of the general
format mm/dd/yyyy. For more information, see “Reading Different Types of
Text Data” on p. 48.

42

Chapter 3

Note: The command syntax in this example was adapted from the command syntax
generated by the Text Wizard (File menu, Read Text Data), which automatically
generated valid SPSS variable names from the information on the first line of the
data file.

Fixed-Width Text Data

In a fixed-width data file, variables start and end in the same column locations for
each case. No delimiters are required between values, and there is often no space
between the end of one value and the start of the next. For fixed-width data files, the
command that reads the data file (GET DATA or DATA LIST) contains information
on the column location and/or width of each variable.

Example

In the simplest type of fixed-width text data file, each case is contained on a single line
(record) in the file. In this example, the text data file simple_fixed.txt looks like this:

001 m 28 12212
002 £ 29 21212
003 £ 45 32145
128 m 17 11194

Using DATA LIST, the command syntax to read the file is:

*simple_fixed.sps.
DATA LIST FIXED
FILE='c:\examples\data\simple_fixed.txt'
/id 1-3 sex 5 (A) age 7-8 opinionl TO opinion5 10-14.
EXECUTE.

® The keyword FIXED is included in this example, but since it is the default format,
it can be omitted.

B The forward slash before the variable id separates the variable definitions from the
rest of the command specifications (unlike other commands where subcommands
are separated by forward slashes). The forward slash actually denotes the start of
each record that will be read, but in this case there is only one record per case.

B The variable id is located in columns 1 through 3. Since no format is specified, the
standard numeric format is assumed.

43

Getting Data into SPSS

m The variable sex is found in column 5. The format (2) indicates that this is a string
variable, with values that contain something other than numbers.

The numeric variable age is in columns 7 and 8.

opinionl TO opinion5 10-14 defines five numeric variables, with each
variable occupying a single column: opinionl in column 10, opinion2 in column
11, and so on.

You could define the same data file using variable width instead of column locations:

*simple_fixed_alt.sps.

DATA LIST FIXED
FILE='c:\examples\data\simple_fixed.txt'
/id (F3, 1X) sex (Al, 1X) age (F2, 1X)
opinionl TO opinion5 (5F1).

EXECUTE.

B id (F3, 1X) indicates that the variable id is in the first three column positions,
and the next column position (column 4) should be skipped.

m Each variable is assumed to start in the next sequential column position; so, sex
is read from column 5.

Figure 3-9
Fixed-width text data file displayed in Data Editor
=] Untitled - SPS5 Data Editor _ O
File Edit Mew Data Transform Analyze Graphs Extras Utilities Window Help
=|@|S| B o|~| Bl =]k sl Fle=| BlwlF S 2
|‘I2: id |
id sex | age | opiniond opinion2 | opinion3 | opiniond opinions ﬂ
1 1{m 28 1 2 2 1 2
2 21f 29 2 1 2 1 2
B 3f 45 3 2 1 4 5
4] 128|m 17 1 1 1 9 4
5 -
|4 [|\ Data view £ Variakle View / KR! |]
|5PS5 Processor is ready 5
Example

Reading the same file with GET DATA, the command syntax would be:

*simple_fixed_getdata.sps.

44

Chapter 3

GET DATA /TYPE = TXT
/FILE = 'C:\examples\data\simple_fixed.txt'
/ARRANGEMENT = FIXED
/VARIABLES =/1 id 0-2 F3 sex 4-4 Al age 6-7 F2
opinionl 9-9 F opinion2 10-10 F opinion3 11-11 F
opinion4 12-12 F opinion5 13-13 F.

B The first column is column O (in contrast to DATA LIST, in which the first column
is column 1).

m There is no default data type. You must explicitly specify the data type for all
variables.

B You must specify both a start and an end column position for each variable, even if
the variable occupies only a single column (for example, sex 4-4).

m All variables must be explicitly specified; you cannot use the keyword TO to define
a range of variables.

Reading Selected Portions of a Fixed-Width File

With fixed-format text data files, you can read all or part of each record and/or skip
entire records.

Example

In this example, each case takes two lines (records), and the first line of the file should
be skipped because it doesn’t contain data. The data file, skip_first_fixed.txt, looks
like this:

Employee age, department, and salary information
John Smith

26 2 40000

Joan Allen

32 3 48000

Bill Murray

45 3 50000

The DATA LIST command syntax to read the file is:

*skip_first_fixed.sps.

DATA LIST FIXED

FILE = 'c:\examples\data\skip_ first_fixed.txt'
RECORDS=2
SKIP=1

45

/name 1-20 (A)

/age 1-2 dept 4 salary 6-10.

EXECUTE.

Getting Data into SPSS

The RECORDS subcommand indicates that there are two lines per case.

The skIP subcommand indicates that the first line of the file should not be

included.

m The first forward slash indicates the start of the list of variables contained on the
first record for each case. The only variable on the first record is the string variable

name.

m The second forward slash indicates the start of the variables contained on the
second record for each case.

Figure 3-10

Fixed-width, multiple-record text data file displayed in Data Editor

Untitled - SPSS Data Editor H=] E3

File Edit Wiew Data Transform Analyze Graphs Extras Utilities window Help

S|E|8| B| =« & =] &l F= ElEE S @

4 [v |\Data View A Variahle view /

|

|B: Fae |
narme age | dept | salary war var
1{John Smith 26 2 40000
2|Joan Allen 32 3 48000
3| Bill Murray 45 3 50000
4

|SPSS Processor is ready

slj'_

Example

With fixed-width text data files, you can easily read selected portions of the data. For
example, using the skip_first_fixed.txt data file from the above example, you could
read just the age and salary information.

*selected_vars_fixed.sps.

DATA LIST FIXED

FILE = 'c:\examples\data\skip_first_ fixed.txt'

RECORDS=2
SKIP=1

/2 age 1-2 salary 6-10.

EXECUTE.

46

Chapter 3

B As in the previous example, the command specifies that there are two records per
case and that the first line in the file should not be read.

® /2 indicates that variables should be read from the second record for each case.
Since this is the only list of variables defined, the information on the first record
for each case is ignored, and the employee’s name is not included in the data to
be read.

m The variables age and salary are read exactly as before, but no information is read
from columns 3-5 between those two variables because the command does not
define a variable in that space; so, the department information is not included
in the data to be read.

DATA LIST FIXED and Implied Decimals

If you specify a number of decimals for a numeric format with DATA LIST FIXED
and some data values for that variable do not contain decimal indicators, those values
are assumed to contain implied decimals.

Example

*implied_decimals.sps.

DATA LIST FIXED /varl (F5.2).
BEGIN DATA

123

123.0

1234

123.4

end data.

B The values of 123 and 1234 will be read as containing two implied decimals
positions, resulting in values of 1.23 and 12.34.

® The values of 123.0 and 123.4, however, contain explicit decimal indicators,
resulting in values of 123.0 and 123.4.

DATA LIST FREE (and LIST) and GET DATA /TYPE=TEXT do not read implied
decimals; so a value of 123 with a format of F5.2 will be read as 123.

47

Getting Data into SPSS

Text Data Files with Very Wide Records

Some machine-generated text data files with a large number of variables may
have a single, very wide record for each case. If the record width exceeds 8,192
columns/characters, you need to specify the record length with the FILE HANDLE
command before reading the data file.

*wide_file.sps.
*Read text data file with record length of 10,000.
*This command will stop at column 8,192.
DATA LIST FIXED
FILE='c:\examples\data\wide_file.txt"
/varl TO varl000 (1000F10).

EXECUTE.
*Define record length first.
FILE HANDLE wide_file NAME = 'c:\examples\data\wide_file.txt'

/MODE = CHARACTER /LRECL = 10000.
DATA LIST FIXED

FILE = wide_file

/varl TO varl000 (1000F10).
EXECUTE.

m FEach record in the data file contains 1,000 10-digit values, for a total record length
of 10,000 characters.

B The first DATA LIST command will read only the first 819 values (8,190
characters), and the remaining variables will be set to the system-missing value. A
warning message is issued for each variable that is set to system-missing, which in
this example means 181 warning messages.

B FILE HANDLE assigns a “handle” of wide_file to the data file wide_file.txt.
® The LRECL subcommand specifies that each record is 10,000 characters wide.

B The FILE subcommand on the second DATA LIST command refers to the file
handle wide_file instead of the actual filename, and all 1,000 variables are read
correctly.

48

Chapter 3

Reading Different Types of Text Data

SPSS can read text data recorded in a wide variety of formats. Some of the more
common formats are listed in the following table:

Type Example Format specification
Numeric 123 F3

123.45 F6.2
Period as decimal indicator, comma as | 12,345 COMMAG6
thousands separator 1.2345 COMMA7 1
Comma as decimal indicator, period as | 123,4 DOT6
thousands separator 12345 DOT7.1
Dollar $12,345 DOLLAR?7

$12,234.50 DOLLAR9.2
String (alphanumeric) Female A6
International date 28-OCT-1986 DATEI11
American date 10/28/1986 ADATE10
Date and time 28 October, 1986 23:56 DATETIME22

For more information on date and time formats, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference. For a complete list of
data formats supported by SPSS, see “Variables” in the “Universals” section of the

SPSS Command Syntax Reference.

Example

*delimited_formats.sps.

DATA LIST LIST (" ")
/numericvVar

BEGIN DATA

1 2 abc 28/10/03

111 2.222,2 abcd 28-0CT-2003

(F4) dotVar (DOT7.1)

111.11 222.222,222 abcdefg 28-0October-2003

END DATA.

stringVar (a4)

dateVar (DATE11l) .

49

Getting Data into SPSS

Figure 3-1
Different data types displayed in Data Editor

Untitled - SPSS Data Editor _ (O] =]
File Edit Wew Data Transform Analvze Graphs Utilities Window Help

|8 ®| o~ 1] =[] @ F| SlEE %]

|3 hUmEnicy ar |1 11.11

numerich'ar dotar string*ar dateMar veﬁl
1 20abc 28-00CT-2003

1
2 1 22222 abed 28-0CT-2003
3 111 222222 2 |abed 28-0CT-2003

4 -|

4 [v |\ Data view 4 Variahle View f | | 3

|SPSS Frocessar is ready I?

All of the numeric and date values are read correctly even if the actual values

exceed the maximum width (number of digits and characters) defined for the
variables.

Although the third case appears to have a truncated value for numericVar, the
entire value of 111.11 is stored internally. Since the defined format is also used as
the display format, and (F4) defines a format with no decimals, 111 is displayed
instead of the full value. Values aren’t actually truncated for display; they’re
rounded. A value of 111.99 would display as 112.

The dateVar value of 28-October-2003 is displayed as 28-OCT-2003 to fit the
defined width of 11 digits/characters.

For string variables, the defined width is more critical than with numeric variables.
Any string value that exceeds the defined width is truncated; so, only the first four
characters for stringVar in the third case are read. Warning messages are displayed
in the log for any strings that exceed the defined width.

Reading Complex Text Data Files

“Complex” text data files come in a variety of flavors, including:

Mixed files in which the order of variables isn’t necessarily the same for all records
and/or some record types should be skipped entirely.

Grouped files in which there are multiple records for each case that need to be
grouped together.

Nested files in which record types are related to each other hierarchically.

50

Chapter 3

Mixed Files

A mixed file is one in which the order of variables may differ for some records and/or
some records may contain entirely different variables or information that shouldn’t
be read.

Example

In this example, there are two record types that should be read: one in which state
appears before city and one in which city appears before state. There is also an
additional record type that shouldn’t be read.

*mixed_file.sps.
FILE TYPE MIXED RECORD = 1-2.
- RECORD TYPE 1.
- DATA LIST FIXED
/state 4-5 (A) city 7-17 (A) population 19-26 (F).
- RECORD TYPE 2.
- DATA LIST FIXED
/city 4-14 (A) state 16-17 (A) population 19-26 (F).
END FILE TYPE.
BEGIN DATA

01 TX Dallas 3280310
01 IL Chicago 8008507
02 Ancorage AK 257808
99 What am I doing here?
02 Casper WY 63157
01 WI Madison 428563
END DATA.

® The commands that define how to read the data are all contained within the FILE
TYPE-END FILE TYPE structure.

MIXED identifies the type of data file.

RECORD = 1-2 indicates that the record type identifier appears in the first two
columns of each record.

® FEach DATA LIST command reads only records with the identifier value specified
on the preceding RECORD TYPE command. So, if the value in the first two
columns of the record is 1 (or 01), state comes before city, and if the value is 2,
city comes before state.

B The record with the value 99 in the first two columns is not read, since there are no
corresponding RECORD TYPE and DATA LIST commands.

51

Getting Data into SPSS

You can also include a variable that contains the record identifier value by including a
variable name on the RECORD subcommand of the FILE TYPE command, as in:

FILE TYPE MIXED /RECORD = recID 1-2.

You can also specify the format for the identifier value, using the same type of format
specifications as the DATA LIST command. For example, if the value is a string
instead of a simple numeric value:

FILE TYPE MIXED /RECORD = recID 1-2 (A).

Grouped Files

In a grouped file, there are multiple records for each case that should be grouped
together based on a unique case identifier. Each case usually has one record of each
type. All records for a single case must be together in the file.

Example

In this example, there are three records for each case. Each record contains a value
that identifies the case, a value that identifies the record type, and a grade or score for
a different course.

* grouped_file.sps.

* A case is made up of all record types.
FILE TYPE GROUPED RECORD=6 CASE=student 1-4.
RECORD TYPE 1.

- DATA LIST /english 8-9 (A).

RECORD TYPE 2.

- DATA LIST /reading 8-10.

RECORD TYPE 3.

- DATA LIST /math 8-10.

END FILE TYPE.

BEGIN DATA

0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 3 71
0002 2 100
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94

52

Chapter 3

0004 3 91
END DATA.

B The commands that define how to read the data are all contained within the FILE

TYPE-END FILE TYPE structure.

GROUPED identifies the type of data file.

RECORD=6 indicates that the record type identifier appears in column 6 of each

record.

B CASE=student 1-4 indicates that the unique case identifier appears in the first
four columns and assigns that value to the variable student in the active dataset.

B The three RECORD TYPE and subsequent DATA LIST commands determine how
each record is read, based on the value in column 6 of each record.

Figure 3-12

Grouped data displayed in Data Editor

Untitled - SPSS Data Editor

IS[= E3

File Edit “ew Data Transform Analvze Graphs Ubilities indow Help

=|Q|8] B| o] L =]k ol Flre| BlEIE 3]

=

|B : shudent |
student | english | reading | rmath war
1 1B+ 74 g3
2 2[A 100 71
3 3|B- 85 g1
4 4|C 94 N
5

~|

4|+ [\Data View £ variakleview 7 4]

o[

|SPSS Processor is ready

A

Example

In order to read a grouped data file correctly, all records for the same case must be
contiguous in the source text data file. If they are not, you need to sort the data file
before reading it as a grouped data file. You can do this by reading the file as a simple
text data file, sorting it and saving it, and then reading it again as a grouped file.

*grouped_file2.sps.
* Data file is sorted by record type instead of by

identification number.

DATA LIST FIXED

/alldata 1-80 (A)

caseid 1-4.

53

Getting Data into SPSS

BEGIN DATA

0001 1 B+
0002 1 A
0003 1 B-
0004 1 ¢
0001 2 74
0002 2 100
0003 2 88
0004 2 94
0001 3 83
0002 3 71
0003 3 81
0004 3 91
END DATA.

SORT CASES BY caseid.

WRITE OUTFILE='c:\temp\tempdata.txt'
/alldata.

EXECUTE.

* read the sorted file.

FILE TYPE GROUPED FILE='c:\temp\tempdata.txt'
RECORD=6 CASE=student 1-4.

- RECORD TYPE 1.

- DATA LIST /english 8-9 (A).

- RECORD TYPE 2.

- DATA LIST /reading 8-10.

- RECORD TYPE 3.

- DATA LIST /math 8-10.

END FILE TYPE.

EXECUTE.

m The first DATA LIST command reads all of the data on each record as a single
string variable.

® In addition to being part of the string variable spanning the entire record, the first
four columns are read as the variable caseid.

m The data file is then sorted by caseid, and the string variable alldata, containing all
of the data on each record, is written to the text file tempdata.txt.

m The sorted file, tempdata.txt, is then read as a grouped data file, just like the inline
data in the previous example.

Prior to SPSS 13.0, the maximum width of a string variable was 255 characters; so,
in earlier releases, for a file with records wider than 255 characters, you would need
to modify the job slightly to read and write multiple string variables. For example, if
the record width is 1,200:

DATA LIST FIXED
/stringl to string6 1-1200 (A) caseid 1-4.

54

Chapter 3

This would read the file as six 200-character string variables.

SPSS can now handle much longer strings in a single variable: 32,767 bytes. Thus,
this workaround is unnecessary for SPSS 13.0 or later. (If the record length exceeds
8,192 bytes, you need to use the FILE HANDLE command to specify the record length.
See the SPSS Command Syntax Reference for more information.)

Nested (Hierarchical) Files

In a nested file, the record types are related to each other hierarchically. The record
types are grouped together by a case identification number that identifies the
highest level—the first record type—of the hierarchy. Usually, the last record type
specified—the lowest level of the hierarchy—defines a case. For example, in a file
containing information on a company’s sales representatives, the records could be
grouped by sales region. Information from higher record types can be spread to each
case. For example, the sales region information can be spread to the records for each
sales representative in the region.

Example

In this example, sales data for each sales representative are nested within sales regions
(cities), and those regions are nested within years.

*nested_filel.sps.

FILE TYPE NESTED RECORD=1 (A) .

- RECORD TYPE 'Y'.

- DATA LIST / Year 3-6.

- RECORD TYPE 'R'.

- DATA LIST / Region 3-13 (A).

- RECORD TYPE 'P'.

- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
END FILE TYPE.

BEGIN DATA

Y 2002

R Chicago

P Jones 900
P Gregory 400
R Baton Rouge

P Rodriguez 300
P Smith 333
P Grau 100
END DATA.

55

Getting Data into SPSS

Figure 3-13
Nested data displayed in Data Editor
Untitled - SPSS Data Editor Mi=] E3
File Edit “ew Data Transform Analvze Graphs Ubilities indow Help
3|88 =] o L] =] 5] a Flre BlElE @l
|?:Year |
Year Region SalesRep Sales yar ﬂ
1| 2002 |Chicago Jones 900
2| 2002 |Chicago Gregory 400
3| 2002 |Eaton Rouge |Rodriguez 300
4| 2002 |Eaton Rouge | Smith 333
5| 2002 |Baton Rouge |[Grau 100 ~|
|4 [» |\Data view Lvariahleview / | 4] | I
|SPSS Processor is ready i

B The commands that define how to read the data are all contained within the FILE
TYPE-END FILE TYPE structure.

NESTED identifies the type of data file.

The value that identifies each record type is a string value in column 1 of each
record.

® The order of the RECORD TYPE and associated DATA LIST commands defines the
nesting hierarchy, with the highest level of the hierarchy specified first. So, 'y’
(year) is the highest level, followed by 'R (region), and finally ' P' (person).

m FEight records are read, but one of those contains year information and two identify
regions; so, the active dataset contains five cases, all with a value of 2002 for Year,
two in the Chicago Region and three in Baton Rouge.

Using INPUT PROGRAM to Read Nested Files

The previous example imposes some strict requirements on the structure of the data.
For example, the value that identifies the record type must be in the same location
on all records, and it must also be the same type of data value (in this example, a
one-character string).

Instead of using a FILE TYPE structure, we can read the same data with an INPUT
PROGRAM, which can provide more control and flexibility.

56

Chapter 3

Example

This first input program reads the same data file as the FILE TYPE NESTED example
and obtains the same results in a different manner.

* nested_inputl.sps.

INPUT PROGRAM.

- DATA LIST FIXED END=#eof /#type 1 (A).
- DO IF #eof.

- END FILE.

- END TIF.

- DO IF #type='Y"'.

- REREAD.

- DATA LIST /Year 3-6.

- LEAVE Year.

- ELSE IF #type='R"'.

- REREAD.

- DATA LIST / Region 3-13 (A).
- LEAVE Region.

- ELSE IF #type='P'.

- REREAD.

- DATA LIST / SalesRep 3-13 (A) Sales 20-23.
- END CASE.

- END TF.

END INPUT PROGRAM.

BEGIN DATA

Y 2002

R Chicago

P Jones 900
P Gregory 400
R Baton Rouge

P Rodriguez 300
P Smith 333
P Grau 100
END DATA.

® The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

B The first DATA LIST command reads the temporary variable #type from the first
column of each record.

B END=#eof creates a temporary variable named #eof that has a value of 0O until the
end of the data file is reached, at which point the value is set to 1.

B DO IF #eof evaluates as true when the value of #eof is set to 1 at the end of the
file, and an END FILE command is issued, which tells the INPUT PROGRAM to
stop reading data. In this example, this isn’t really necessary, since we’re reading

57

Getting Data into SPSS

the entire file; however, it will be used later when we want to define an end point
prior to the end of the data file.

B The second DO IF-ELSE IF-END IF structure determines what to do for each
value of type.

B REREAD reads the same record again, this time reading either Year, Region, or
SalesRep and Sales, depending on the value of #type.

B LEAVE retains the value(s) of the specified variable(s) when reading the next
record. So, the value of Year from the first record is retained when reading Region
from the next record, and both of those values are retained when reading SalesRep
and Sales from the subsequent records in the hierarchy. So, the appropriate values
of Year and Region are spread to all of the cases at the lowest level of the hierarchy.

B END CASE marks the end of each case. So, after reading a record with a #type
value of 'P', the process starts again to create the next case.

Example

In this example, the data file reflects the nested structure by indenting each nested
level; so, the values that identify record type do not appear in the same place on each
record. Furthermore, at the lowest level of the hierarchy, the record type identifier is
the last value instead of the first. Here, an INPUT PROGRAM provides the ability to
read a file that cannot be read correctly by FILE TYPE NESTED.

*nested_input2.sps.
INPUT PROGRAM.
- DATA LIST FIXED END=#eof
/#yr 1 (A) #reg 3(A) #person 25 (A).
- DO IF #eof.
- END FILE.
- END IF.
- DO IF #yr='Y'.
- REREAD.
- DATA LIST /Year 3-6.
- LEAVE Year.
- ELSE IF #reg='R'.
- REREAD.
- DATA LIST / Region 5-15 (A).
- LEAVE Region.
- ELSE IF #person='P'.
- REREAD.
- DATA LIST / SalesRep 7-17 (A) Sales 20-23.
- END CASE.
- END IF.
END INPUT PROGRAM.
BEGIN DATA

58

Chapter 3

Y 2002
R Chicago
Jones 900 P
Gregory 400 P
R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P
END DATA.
® This time, the first DATA LIST command reads three temporary variables at
different locations, one for each record type.
®m The DO IF-ELSE IF-END IF structure then determines how to read each record
based on the values of #yr, #reg, or #person.
B The remainder of the job is essentially the same as the previous example.
Example

Using the input program, we can also select a random sample of cases from each
region and/or stop reading cases at a specified maximum.

*nested_input3.sps.
INPUT PROGRAM.
COMPUTE #count=0.

DATA LIST FIXED END=#eof

/#yr 1 (A) #reg 3(A) #person 25
DO IF #eof OR #count = 1000.

END FILE.
END IF.
DO IF #yr='Y'.

REREAD.

DATA LIST /Year 3-6.
LEAVE Year.
ELSE IF #reg='R'.
REREAD.

DATA LIST / Region 5-15
LEAVE Region.

(A) .

ELSE IF #person='P' AND UNIFORM(1000)

REREAD.

DATA LIST / SalesRep 7-17
END CASE.

COMPUTE #count=#count+1.
END IF.

(&)

END INPUT PROGRAM.
BEGIN DATA
Y 2002

R Chicago

Jones 900 P

(A) .

< 500.

Sales 20-23.

59

Getting Data into SPSS

Gregory 400 P
R Baton Rouge
Rodriguez 300 P
Smith 333 P
Grau 100 P
END DATA.

COMPUTE #count=0 initializes a case-counter variable.

ELSE IF #person='P' AND UNIFORM(1000) < 500 will read a random
sample of approximately 50% from each region, since UNIFORM (1000) will
generate a value less than 500 approximately 50% of the time.

B COMPUTE #count=#count+1 increments the case counter by 1 for each case
that is included.

B DO IF #eof OR #count = 1000 will issue an END FILE command if the
case counter reaches 1,000, limiting the total number of cases in the active dataset
to no more than 1,000.

Since the source file must be sorted by year and region, limiting the total number of
cases to 1,000 (or any value) may omit some years or regions within the last year
entirely.

Repeating Data

In a repeating data file structure, multiple cases are constructed from a single record.
Information common to each case on the record may be entered once and then spread
to all of the cases constructed from the record. In this respect, a file with a repeating
data structure is like a hierarchical file, with two levels of information recorded on a
single record rather than on separate record types.

Example

In this example, we read essentially the same information as in the examples of nested
file structures, except now all of the information for each region is stored on a single
record.

*repeating_data.sps.
INPUT PROGRAM.
DATA LIST FIXED
/Year 1-4 Region 6-16 (A) #numrep 19.
REPEATING DATA STARTS=22 /OCCURS=#numrep

60

Chapter 3

/DATA=SalesRep 1-10 (A) Sales 12-14.
END INPUT PROGRAM.
BEGIN DATA

2002 Chicago 2 Jones 900Gregory 400
2002 Baton Rouge 3 Rodriguez 300Smith 333Grau 100
END DATA.

B The commands that define how to read the data are all contained within the INPUT
PROGRAM structure.

B The DATA LIST command defines two variables, Year and Region, that will be
spread across all of the cases read from each record. It also defines a temporary
variable, #numrep.

B On the REPEATING DATA command, STARTS=22 indicates that the case starts
in column 22.

B OCCURS=#numrep uses the value of the temporary variable, #numrep (defined on
the previous DATA LIST command), to determine how many cases to read from
each record. So, two cases will be read from the first record, and three will be
read from the second.

m The DATA subcommand defines two variables for each case. The column locations
for those variables are relative locations. For the first case, column 22 (specified
on the STARTS subcommand) is read as column 1. For the next case, column 1 is
the first column after the end of the defined column span for the last variable in the
previous case, which would be column 36 (22+14=36).

The end result is an active dataset that looks remarkably similar to the data file created
from the hierarchical source data file.

61

Figure 3-14
Repeating data displayed in Data Editor

Untitled - SPS5 Data Editor
File Edit “ew Data Transform Analvze Graphs Ubilities indow Help

IS[=1 E3

S|E|8| B| <] & =k & = ElElE

=

|8:Year |
Year Region SalesRep | Sales var
1| 2002 |Chicago Jones 900
2| 2002 |Chicago Gregary 400
3| 2002 |Baton Rouge |Rodriguez 300
4| 2002 |Baton Rouge | Smith 333
5| 2002 |Baton Rouge |[Grau 100

R
|4 [+ |\\Data View {Variable view /7 | 4] |

e

|SPSS Processor is ready

A

Reading SAS Data Files

SPSS can read the following types of SAS files:

SAS long filename, versions 7 through 9

SAS short filenames, versions 7 through 9
SAS version 6 for Windows
SAS version 6 for UNIX

SAS Transport

Getting Data into SPSS

The basic structure of a SAS data file is very similar to an SPSS data file—rows are
cases (observations), and columns are variables—and reading SAS data files requires
only a single, simple command: GET SAS.

Example

In its simplest form, the GET SAS command has a single subcommand that specifies
the SAS filename.

*get_sas.sps.
GET SAS DATA='C:\examples\datalgss.sd2'.

62

Chapter 3

m SAS variable names that do not conform to SPSS variable-naming rules are
converted to valid SPSS variable names.
m SAS variable labels specified on the LABEL statement in the DATA step are used as
variable labels in SPSS.
Figure 3-15
SAS data file with variable labels in SPSS
Untitled - SPSS Data Editor H=] E3
File Edit Wiew Data Transform pnalvee Graphs Ukliies Window Help
S(E(&8| ®| o|=| 5] =lk| 6 2 Sl el
Mame Type | Width | Decimals Label YWalues ﬂ
1|AGE MNumeric |2 0 Age of Respondent Mone
2[3EX Mumeric |1 0 Respondent’s Sex Mone
J|EQUC MNumeric |2 0 Highest Year of School Completed [Mane
A[INCOMERT [Mumeric |2 0 Total Family Income Mone
5WWRKESTAT |Mumeric |1 0 Labor Force Status Mone
BRICHWOR [Mumeric |1 0 If Rich, Continue or Stop WWaorking [Mane
Z|SATJOE [Mumeric |1 0 Job ar Housework Mone -
4 [» [\ Data View) Variable View / L] | 3|
|SPSS Processar is ready | s
Example

SAS value formats are similar to SPSS value labels, but SAS value formats are saved
in a separate file; so, if you want to use value formats as value labels, you need to use
the FORMATS subcommand to specify the formats file.

*get_sas2.sps.
GET SAS DATA='C:\examples\data\gss.sd2'
FORMATS="'c:\examples\data\GSS_Fmts.sd2'.

Labels assigned to single values are retained.
Labels assigned to a range of values are ignored.

Labels assigned to the SAS keywords Low, HIGH, and OTHER are ignored.

Labels assigned to string variables and non-integer numeric values are ignored.

63

Getting Data into SPSS

Figure 3-16
SAS value formats used as value labels
= Untitled - SPSS Data Editor =] E3
Eile Edit Wiew Data Transform gnalyze Graphs Utilities wWwindow Help
(@8] B| o|| 5 =]k al Ele=| 2lnlE =l
Label “Walues Missing 4
1|Age of Respondent {28, Don't know}... MNone £
2|Respondent's Sex {1, Male}.. MNone £
3|Highest Year of School Completed {97, Mot applicable)... MNone £
4 Tatal Family Income MNone MNone £
5|Labaor Faorce Status {1, Warking fulltimel... Mane e
[« [+ [\ Data View A variable view /~ |.¢] | »
|5PS5 Processor is ready [v

Reading Stata Data Files

GET STATA reads Stata-format data files created by Stata versions 4 through 8. The
only specification is the FILE keyword, which specifies the Stata data file to be read.

Variable names. Stata variable names are converted to SPSS variable names

in case-sensitive form. Stata variable names that are identical except for case
are converted to valid SPSS variable names by appending an underscore and a
sequential letter (_A, _B, _C, ..., _Z, _AA, _AB, ..., etc.).

Variable labels. Stata variable labels are converted to SPSS variable labels.

Value labels. Stata value labels are converted to SPSS value labels, except for Stata
value labels assigned to “extended” missing values.

Missing values. Stata “extended” missing values are converted to system-missing.

Date conversion. Stata date format values are converted to SPSS DATE format
(d-m-y) values. Stata “time-series” date format values (weeks, months, quarters,
etc.) are converted to simple numeric (F) format, preserving the original, internal
integer value, which is the number of weeks, months, quarters, etc., since the
start of 1960.

Example

GET STATA FILE='c:\examples\data\statafile.dta'.

Chapter

File Operations

You can combine and manipulate data sources in a number of ways, including:
Using multiple data sources

Merging data files

Aggregating data

Weighting data

Changing file structure

Using output as input. For more information, see “Using Output as Input with
OMS?” in Chapter 9 on p. 162.

Working with Multiple Data Sources

Starting with SPSS 14.0, SPSS can have multiple data sources open at the same time.

B When you use the dialog boxes and wizards in the graphical user interface to read
data into SPSS, the default behavior is to open each data source in a new Data
Editor window, and any previously open data sources remain open and available
for further use. You can change the active dataset simply by clicking anywhere in
the Data Editor window of the data source that you want to use or by selecting the
Data Editor window for that data source from the Window menu.

B In command syntax, the default behavior remains the same as in previous releases:
reading a new data source automatically replaces the active dataset. If you want to

work with multiple datasets using command syntax, you need to use the DATASET
commands.

65

66

Chapter 4

The DATASET commands (DATASET NAME, DATASET ACTIVATE, DATASET
DECLARE, DATASET COPY, DATASET CLOSE) provide the ability to have multiple
data sources open at the same time and control which open data source is active at any
point in the session. Using defined dataset names, you can then:

Merge data (for example, MATCH FILES, ADD FILES, UPDATE) from multiple
different source types (for example, text data, database, spreadsheet) without
saving each one as an SPSS data file first.

Create new datasets that are subsets of open data sources (for example, males in
one subset, females in another, people under a certain age in another; or original
data in one set and transformed/computed values in another subset).

Copy and paste variables, cases, and/or variable properties between two or more
open data sources in the Data Editor.

Operations

SPSS commands operate on the active dataset. The active dataset is the data
source most recently opened (for example, by commands such as GET DATA, GET
SAS, GET STATA, GET TRANSLATE) or most recently activated by a DATASET
ACTIVATE command.

Variables from one dataset are not available when another dataset is the active
dataset.

Transformations to the active dataset—before or after defining a dataset
name—are preserved with the named dataset during the session, and any pending
transformations to the active dataset are automatically executed whenever a
different data source becomes the active dataset.

Dataset names can be used in most commands that can contain a reference to
an SPSS data file.

Wherever a dataset name, file handle (defined by the FILE HANDLE command),
or filename can be used to refer to an SPSS data file, defined dataset names take
precedence over file handles, which take precedence over filenames. For example,
if filel exists as both a dataset name and a file handle, FILE=filel in the MATCH
FILES command will be interpreted as referring to the dataset named filel, not
the file handle.

Example

*multiple_datasets.sps.

67

File Operations

DATA LIST FREE /filelVar.

BEGIN DATA

11 12 13

END DATA.

DATASET NAME filel.

COMPUTE filelVar=MOD(filelVar,10).

DATA LIST FREE /file2Var.

BEGIN DATA

21 22 23

END DATA.

DATASET NAME file2.

*file2 is now the active dataset; so the following
command will generate an error.

FREQUENCIES VARIABLES=filelVar.

*now activate dataset filel and rerun Frequencies.
DATASET ACTIVATE filel.

FREQUENCIES VARIABLES=filelVar.

B The first DATASET NAME command assigns a name to the active dataset (the data

defined by the first DATA LIST command). This keeps the dataset open for

subsequent use in the session after other data sources have been opened. Without

this command, the dataset would automatically close when the next command
that reads/opens a data source is run.

® The COMPUTE command applies a transformation to a variable in the active

dataset. This transformation will be preserved with the dataset named filel/. The

order of the DATASET NAME and COMPUTE commands is not important. Any

transformations to the active dataset, before or after assigning a dataset name, are

preserved with that dataset during the session.

® The second DATA LIST command creates a new dataset, which automatically

becomes the active dataset. The subsequent FREQUENCIES command that specifies
a variable in the first dataset will generate an error, because file! is no longer the

active dataset, and there is no variable named file Var in the active dataset.

B DATASET ACTIVATE makes filel the active dataset again, and now the
FREQUENCIES command will work.

Example

*dataset_subsets.sps.
DATASET CLOSE ALL.
DATA LIST FREE /gender.
BEGIN DATA
0011011100
END DATA.

DATASET NAME original.

68

Chapter 4

DATASET COPY males.
DATASET ACTIVATE males.
SELECT IF gender=0.
DATASET ACTIVATE original.
DATASET COPY females.
DATASET ACTIVATE females.
SELECT IF gender=1l.
EXECUTE.

® The first DATASET COPY command creates a new dataset, males, that represents
the state of the active dataset at the time it was copied.

B The males dataset is activated and a subset of males is created.
B The original dataset is activated, restoring the cases deleted from the males subset.

B The second DATASET COPY command creates a second copy of the original dataset
with the name females, which is then activated and a subset of females is created.

B Three different versions of the initial data file are now available in the session: the
original version, a version containing only data for males, and a version containing
only data for females.

Figure 4-1
Multiple subsets available in the same session
£ *Untitled9 [original] - SPSS Data Editor x
15 98NCer e iy ntitled10 [males] - SPSS Data Editor B3
__|_gender
N oo
7 oo |15 gender BR wntitted11 [females] - SPSS Data Editor b3
3| 100 | gender |
T4 1m0t 00| e
—] a0 3 o 15 : gender
75 1.00 3 o0 qender ‘ war var var war Yar ~
B
5 1005 ol —= :
— 0|8 3 1.00
— = 4 1.00
7 4
% oo —| 5 1.00
< v \DataVie — o| B
10 | 7]
11 a
4/ v \DataViev g
10
-

11
< » \DataView £ Variable Yiew / B3 >

69

File Operations

Merging Data Files

You can merge two or more datasets in several ways:
B Merge datasets with the same cases but different variables.
B Merge datasets with the same variables but different cases.

m Update values in a master data file with values from a transaction file.

Merging Files with the Same Cases but Different Variables

The MATCH FILES command merges two or more data files that contain the same
cases but different variables. For example, demographic data for survey respondents
might be contained in one data file, and survey responses for surveys taken at different
times might be contained in multiple additional data files. The cases are the same
(respondents), but the variables are different (demographic information and survey
responses).

This type of data file merge is similar to joining multiple database tables except that
you are merging multiple SPSS-format data files rather than database tables. For
information on reading multiple database tables with joins, see “Reading Multiple
Tables” in Chapter 3 on p. 27.

One-to-One Matches

The simplest type of match assumes that there is basically a one-to-one relationship
between cases in the files being merged—for each case in one file, there is a
corresponding case in the other file.

Example

This example merges a data file containing demographic data with another file
containing survey responses for the same cases.

*match_filesl.sps.

*first make sure files are sorted correctly.

GET FILE='C:\examples\data\match_responsel.sav'.

SORT CASES BY id.

DATASET NAME responses.

GET FILE='C:\examples\data\match_demographics.sav'.

SORT CASES BY id.

*now merge the survey responses with the demographic info.
MATCH FILES /FILE=%*

70

Chapter 4

/FILE=responses
/BY id.

EXECUTE.

DATASET NAME is used to name the first dataset, so it will remain available after
the second dataset is opened.

SORT CASES BY idis used to sort both datasets in the same case order. Cases
are merged sequentially, so both datasets must be sorted in the same order to make
sure that cases are merged correctly.

MATCH FILES merges the two datasets. FILE=* indicates the active dataset (the
demographic dataset).

The BY subcommand matches cases by the value of the ID variable in both datasets.
In this example, this is not technically necessary, since there is a one-to-one
correspondence between cases in the two datasets and the datasets are sorted in
the same case order. However, if the datasets are not sorted in the same order and
no key variable is specified on the BY subcommand, the datasets will be merged
incorrectly with no warnings or error messages; whereas, if a key variable is
specified on the BY subcommand and the datasets are not sorted in the same order
of the key variable, the merge will fail and an appropriate error message will be
displayed. If the datasets contain a common case identifier variable, it is a good
practice to use the BY subcommand.

Any variables with the same name are assumed to contain the same information,
and only the variable from the first dataset specified on the MATCH FILES
command is included in the merged dataset. In this example, the ID variable (id) is
present in both datasets, and the merged dataset contains the values of the variable
from the demographic dataset — which is the first dataset specified on the MATCH
FILES command. (In this case, the values are identical anyway.)

For string variables, variables with the same name must have the same defined
width in both files. If they have different defined widths, an error results and the
command does not run. This includes string variables used as BY variables.

71

File Operations

Example

Expanding the previous example, we will merge the same two data files plus a third
data file that contains survey responses from a later date. Three aspects of this third file
warrant special attention:

B The variable names for the survey questions are the same as the variable names
in the survey response data file from the earlier date.

B One of the cases that is present in both the demographic data file and the first
survey response file is missing from the new survey response data file.

® The source file is not an SPSS-format data file; it’s an Excel worksheet.

*match_files2.sps.
GET FILE='C:\examples\data\match_responsel.sav'.
SORT CASES BY id.
DATASET NAME responsel.
GET DATA /TYPE=XLS
/FILE="'c:\examples\data\match_response2.xls'.
SORT CASES BY id.
DATASET NAME response2.
GET FILE='C:\examples\data\match_demographics.sav'.
SORT CASES BY id.
MATCH FILES /FILE=%*
/FILE=responsel
/FILE=response?2
/RENAME opinionl=opinionl_2 opinion2=opinion2_2
opinion3=opinion3_2 opiniond=opiniond_2
/BY id.
EXECUTE.

B As before, all of the datasets are sorted by the values of the ID variable.

B MATCH FILES specifies three datasets this time: the active dataset that contains
the demographic information and the two datasets containing survey responses
from two different dates.

® The RENAME command after the FILE subcommand for the second survey response
dataset provides new names for the survey response variables in that dataset. This
is necessary to include these variables in the merged dataset. Otherwise, they
would be excluded because the original variable names are the same as the variable
names in the first survey response dataset.

72

Chapter 4

® The BY subcommand is necessary in this example because one case (id = 184)
is missing from the second survey response dataset, and without using the BY
variable to match cases, the datasets would be merged incorrectly.

m All cases are included in the merged dataset. The case missing from the second
survey response dataset is assigned the system-missing value for the variables
from that dataset (opinionl_2—-opinion4_2).

Figure 4-2

Merged files displayed in Data Editor

2 match_demographics.say - SPSS Data Editor [_[O]]
File Edit “iew Data Transform Analyze Graphs Utiities Window Help

Z(R|S| B o] L] =|b] 8] Fle| BEE vl

‘13.id |

id |Age| Gender [Income_| Religion |opiniont| opinion2| opinion3| opiniond| opinion!_2{ opinion2_2| opinion3_2 | opiniond_2
category|
3

1501 55
170] 29
184 42
216| 39
227| B2
228| 24
72| 25
253 (500
333| 30
10]385| 23
11]391| 58 |m

|4 []\Data view {Variable View / el |

P55 Processar s ready [[\

2 3 2

B
B
L >

[I s A))

2]
HEIEEREBERIEEEE

e = R R e Y
(AN N v N T N e T N
| | | k3| R3] Lo b 0] | k| e
— || — || w] ;| w|w| R R —
([00| R 0| ke | = | RO | RO
Lo Pof | | o || = =] —
NN I L =l
[N) O S S)]
(Al =]] Y R N Y

e || | o | o] =]
|_|_
R

Table Lookup (One-to-Many) Matches

A table lookup file is a file in which data for each “case” can be applied to multiple
cases in the other data file(s). For example, if one file contains information on
individual family members (such as gender, age, education) and the other file contains
overall family information (such as total income, family size, location), you can use
the file of family data as a table lookup file and apply the common family data to each
individual family member in the merged data file.

Specifying a file with the TABLE subcommand instead of the FILE subcommand
indicates that the file is a table lookup file. The following example merges two text
files, but they could be any combination of data sources that you can read into SPSS.
For information on reading different types of data into SPSS, see Chapter 3 on p. 23.

*match_table_lookup.sps.
DATA LIST LIST

73

File Operations

FILE='c:\examples\data\family data.txt'
/household_id total_income family_ size region.

SORT CASES BY household_id.

DATASET NAME household.

DATA LIST LIST
FILE='c:\examples\data\individual_data.txt'
/household_id indv_id age gender education.

SORT CASE BY household_id.

DATASET NAME individual.

MATCH FILES TABLE='household'
/FILE="'individual'

/BY household_id.

EXECUTE.

Merging Files with the Same Variables but Different Cases

The ADD FILES command merges two or more data files that contain the same
variables but different cases. For example, regional revenue for two different company
divisions might be stored in two separate data files. Both files have the same variables
(region indicator and revenue) but different cases (each region for each division is a
case).

Example

ADD FILES relies on variable names to determine which variables represent the
“same” variables in the data files being merged. In the simplest example, all of the files
contain the same set of variables, using the exact same variable names, and all you
need to do is specify the files to be merged. In this example, the two files both contain
the same two variables, with the same two variable names: Region and Revenue.

*add_filesl.sps.

ADD FILES
/FILE = 'c:\examples\datalcatalog.sav'
/FILE =' c:\examples\data\retail.sav'
/IN = Division.
EXECUTE.

VALUE LABELS Division 0 'Catalog' 1 'Retail Store'.

74

Chapter 4

Figure 4-3
Cases from one file added to another file
Untitled - SPSS Data Editor M=l &3
Eile Edit Wiew Data Transform Analyze Graphs Utliies Window Help
SRR R EEE T EIET
|15: Region |
Region Revenue Division war -
1 §1,234 567 Catalog
2 2 §3,456 789 Catalog
3 3 §2 345 678 Catalog
4 4 $5 678 910 Catalog
a 1 §5,212457 | Retail Store
G 2 P6, 333500 Retail Store
7 3 10 400 311 Retail Store
8 4 §7 722899 Retail Store
9 -
4 [» [\Data view £ variableview 7 |4 | |
|SPSS Processor is ready v

m Cases are added to the active dataset in the order in which the source data files are
specified on the ADD FILES command; all of the cases from catalog.sav appear
first, followed by all of the cases from retail.sav.

B The IN subcommand after the FILE subcommand for retail.sav creates a new
variable named Division in the merged dataset, with a value of 1 for cases that
come from retail.sav and a value of O for cases that come from catalog.sav. (If
the IN subcommand was placed immediately after the FILE subcommand for
catalog.sav, the values would be reversed.)

B The VALUE LABELS command provides descriptive labels for the Division values
of 0 and 1, identifying the division for each case in the merged dataset.

Example

Now that we’ve had a good laugh over the likelihood that all of the files have the
exact same structure with the exact same variable names, let’s look at a more realistic
example. What if the revenue variable had a different name in one of the files and one
of the files contained additional variables not present in the other files being merged?

*add_files2.sps.

first throw some curves into the data.
GET FILE = 'c:\examples\data\catalog.sav'.
RENAME VARIABLES (Revenue=Sales).

DATASET NAME catalog.

75

File Operations

GET FILE = 'c:\examples\data\retail.sav'.
COMPUTE ExtraVar = 9.
EXECUTE.

DATASET NAME retail.
show default behavior.

ADD FILES
/FILE = 'catalog'
/FILE = 'retail'
/IN = Division.
EXECUTE.

now treat Sales and Revenue as same variable,
and drop ExtraVar from the merged file,

ADD FILES
/FILE = 'catalog'
/RENAME (Sales = Revenue)
/FILE = 'retail'

/IN = Division
/DROP ExtraVar
/BY Region.
EXECUTE.

® All of the commands prior to the first ADD FILES command simply modify the
original data files to contain minor variations—Revenue is changed to Sales in one
data file, and an extra variable, ExtraVar, is added to the other data file.

m The first ADD FILES command is similar to the one in the previous example
and shows the default behavior if non-matching variable names and extraneous
variables are not accounted for—the merged dataset has five variables instead
of three, and it also has a lot of missing data. Sales and Revenue are treated as
different variables, resulting in half of the cases having values for Sales and half of
the cases having values for Revenue—and cases from the second data file have
values for ExtraVar, but cases from the first data file do not, since this variable
does not exist in that file.

76

Chapter 4
Figure 4-4
Probably not what you want when you add cases from another file
[Untitled - SPSS Data Editor =]
File Edit Wew Data Transform Analyze Graphs Utilities Window Help
=|D|S| B o] B =] @ F BlEE[S 2
|‘I‘I : Region |
Redgion Sales Revenue Extra%ar | Division y &
1 $1,234 567 0
2 2 $3.456,789 0
3 3 $2,345 678 0
4 4 $5 678,910 . . 0
5 1 §8.212 457 9.00 1
5] 2 $6,333,500 9.00 1
7 3 $10400311 9.00 1
g 4 §7 722 899 9.00 1
9 -
<[+]\ Data View £ Variahle View 7 L] | v
|SPSS Processor is ready | S

B In the second ADD FILES command, the RENAME subcommand after the FILE
subcommand for catalog will treat the variable Sales as if its name were Revenue,
so the variable name will match the corresponding variable in retail.

B The DROP subcommand following the FILE subcommand for temp2.sav (and
the associated IN subcommand) will exclude ExtraVar from the merged dataset.
(The DROP subcommand must come after the FILE subcommand for the file that
contains the variables to be excluded.)

B The BY subcommand adds cases to the merged data file in ascending order of
values of the variable Region instead of adding cases in file order—but this
requires that both files already be sorted in the same order of the BY variable.

77

File Operations

Figure 4-5
Cases added in order of Region variable instead of file order
=] Untitled - SPSS Data Editor =] E3
File Edit Mew Data Transform Analvze Graphs Ukilities Window Help
S| 3| B| || B =k o Fe 2| @
PU:Hemon
Redgion Revenue Division war y -
1 1 $1,234 567 0
2 1 $8,212 457 1
3 2 $3,456 759 1]
4 2 $6,333 500 1
E 3 $2,345 578 0
B 3 $10,400 311 1
7 4 $5678 210 0
g 4 §7 722,599 1
9 -
|4 [+ |\Data view {variable view 7 |4 | 3|
|SPSS Processor is ready o

Updating Data Files by Merging New Values from Transaction Files

You can use the UPDATE command to replace values in a master file with updated
values recorded in one or more files called transaction files.

*update.sps.

GET FILE = 'c:\examples\data\update_transaction.sav'.
SORT CASE BY id.

DATASET NAME transaction.

GET FILE = 'c:\examples\data\update_master.sav'.
SORT CASES BY id.

UPDATE /FILE = *

/FILE = transaction
/IN = updated
/BY id.
EXECUTE.

B SORT CASES BY id is used to sort both files in the same case order. Cases are
updated sequentially, so both files must be sorted in the same order.

B The first FILE subcommand on the UPDATE command specifies the master data
file. In this example, FILE = * specifies the active dataset.

B The second FILE subcommand specifies the dataset name assigned to the
transaction file.

78

Chapter 4

® The IN subcommand immediately following the second FILE subcommand
creates a new variable called updated in the master data file; this variable will
have a value of 1 for any cases with updated values and a value of O for cases
that have not changed.

® The BY subcommand matches cases by id. This subcommand is required.
Transaction files often contain only a subset of cases, and a key variable is
necessary to match cases in the two files.

Figure 4-6
Original file, transaction file, and update file
File Edit Yiew Data Transform Analvze Graphs Utilikies Window Help
Dlulgl nInl@lE‘ File Edit uew Data Transform Analvze Graphs Ubilities window Help
9:id
- [EEla ® ol o el o)] S)
id | salary |depantment
1[101] 33000 2[(3 |
2|102) 47250 3 id | salary |departrnent war var var;l
3103 22300 1 1103 | 25000 .
4201 58020 2 21201 | 101200 2
a(104| 122150 1 3
Bl 202 | 53450 Ell B o otemostersov-spssDatacdror —— SIES)
z | Fle Edt Yiew Data Transform Analyze Graphs Ubilities ‘Window Help
|« [+ |\Data View £ Variable View / |— D’*lulgl nI“lEl EIIE.,Iﬁl 'EIEEI glmlﬁlﬁl
E i o1
id | salary |departrment| updated ar var &
— 1101| 33000 2 0 j
20102 47230 3 0
3103 28000 1 1
4104 | 122150 1 0
5|201| 101200 2 1
G202 A3450 3 0
7
TITl\Eata\ﬂew;{VariableViewf | _>|_I
|SPSS Processor is ready S

The salary values for the cases with the id values of 103 and 201 are both updated.

The department value for case 201 is updated, but the department value for case
103 is not updated. System-missing values in the transaction files do not overwrite
existing values in the master file, so the transactions files can contain partial
information for each case.

79

File Operations
Aggregating Data

The AGGREGATE command creates a new dataset where each case represents one or
more cases from the original dataset. You can save the aggregated data to a new dataset
or replace the active dataset with aggregated data. You can also append the aggregated
results as new variables to the current active dataset.

Example

In this example, information was collected for every person living in a selected sample
of households. In addition to information for each individual, each case contains

a variable that identifies the household. You can change the unit of analysis from
individuals to households by aggregating the data based on the value of the household
ID variable.

*aggregatel.sps.
create some sample data.
DATA LIST FREE (" ")
/ID_household (F3) ID_person (F2) Income (F8).
BEGIN DATA
101 1 12345 101 2 47321 101 3 500 101 4 ©
102 1 77233 102 2 0
103 1 19010 103 2 98277 103 3 0
104 1 101244
END DATA.
now aggregate based on household id.
AGGREGATE
/OUTFILE = * MODE = REPLACE
/BREAK = ID_household
/Household_Income = SUM(Income)
/Household_Size = N.

B OUTFILE = * MODE = REPLACE replaces the active dataset with the aggregated
data.

B BREAK = ID_household combines cases based on the value of the household
ID variable.

B Household_Income = SUM(Income) creates a new variable in the aggregated
dataset that is the total income for each household.

B Household_Size = N creates a new variable in the aggregated dataset that is
the number of original cases in each aggregated case.

80

Chapter 4

Figure 4-7
Original and aggregated data

Untitled - SPSS Data Editor

IS[=] E3

File Edit Yiew Data Transform Analyze Graphs Utilities Window Help

SEE=] nInI_I e=| b | o4 Elee| Bk|FE| ®

|‘I 3 1D_househald

4

Example

[=4
|4 [|\ Data view £ Wariakle view /7 |«| |

ID_household ID person | Income var___| 4
1 101 1 12345 = ;
5 o 5 75 Untitled - SPSS Data Editor M= E3
3 m 3 =00 File Edit Wew Data Transform Analyze Graphs Ubilities Window Help
] 101 1 o] | 2|H|8| = ﬂlml_l =k # Fle| BlEE %
5 102 1 77233 |7 1_househoid
(5] 102 2 0
7 e 1 19010 ID_household Hiusehom Housghom ar
nCome Size
2 103 2| 9877 1 101| 60166.00 3
0 103 3 0 2 102| 77233.00 2
10 104 1] 101244 3 103 117287.0 3
11 4 104| 1012440 1
|4 [» |\ Data View £ Variableview 7 |« | 5
|5P35 Proce

.

|SPSS Processor is ready

A

You can also use MODE = ADDVARIABLES to add group summary information to the
original data file. For example, you could create two new variables in the original data
file that contain the number of people in the household and the per capita income for

the household (total income divided by number of people in the household).

*aggregate2.sps.
DATA LIST FREE (" ")

/ID_household (F3) ID_person (F2) Income (F8).

BEGIN DATA

101 1 12345 101 2 47321 101 3 500 101 4 O

102 1 77233 102 2 0

103 1 19010 103 2 98277 103 3 0

104 1 101244
END DATA.
AGGREGATE

/OUTFILE = * MODE = ADDVARIABLES

/BREAK = ID_household
MEAN (Income)

/per_capita_Income =
/Household_Size = N.

B As with the previous example, OUTFILE = * specifies the active dataset as the
target for the aggregated results.

81

File Operations

m Instead of replacing the original data with aggregated data, MODE =
ADDVARIABLES will add aggregated results as new variables to the active dataset.
B As with the previous example, cases will be aggregated based on the household
ID value.
m The MEAN function will calculate the per capita household incomes.
Figure 4-8
Aggregate summary data added to original data
Untitled - SPSS Data Editor H=] E3
Eile Edit Yiew Data Transform gnalyee Graphs Ukliies Window Help
SRS B o] D =k ol Fl| 2ol el
|'I4: Houzehold_Size |
ID_household ID_person Income |Household Size| per_capita_Income -
1 1 1 12345 4 15041.50
2 101 2 47321 4 15041.50
3 101 3 00 4 15041 50
4 1m 4] 4 15041 50
=] 102 1 Fi2a3 2 a861E.50
G 102 2] 2 S8616.50
7 103 1 18010 3 29095 67
3 103 2 827y 3 29095 67
9 103 3 u} 3 39095 67
10 104 1 101244 1 101244 00
11 E
|4 [+ |\Data view £ Variable View J R | J
|SPS5 Processor is ready [v

Aggregate Summary Functions

The new variables created when you aggregate a data file can be based on a wide
variety of numeric and statistical functions applied to each group of cases defined by
the BREAK variables, including:

Number of cases in each group

Sum, mean, median, and standard deviation

Minimum, maximum, and range

Percentage of cases between, above, and/or below specified values
First and last non-missing value in each group

Number of missing values in each group

82

Chapter 4

For a complete list of aggregate functions, see the AGGREGATE command in the SPSS
Command Syntax Reference.

Weighting Data

The WEIGHT command simulates case replication by treating each case as if it were
actually the number of cases indicated by the value of the weight variable. You can use
a weight variable to adjust the distribution of cases to more accurately reflect the larger
population or to simulate raw data from aggregated data.

Example

A sample data file contains 52% males and 48% females, but you know that in the
larger population the real distribution is 49% males and 51% females. You can
compute and apply a weight variable to simulate this distribution.

*weight_sample.sps.

create sample data of 52 males, 48 females.
NEW FILE.

INPUT PROGRAM.

- STRING gender (A6).

- LOOP #I =1 TO 100.

- DO IF #I <= 52.

- COMPUTE gender='Male'.

- ELSE.

- COMPUTE Gender='Female'.

- END TF.

- COMPUTE AgeCategory = trunc(uniform(3)+1).
- END CASE.

- END LOOP.

- END FILE.

END INPUT PROGRAM.

FREQUENCIES VARIABLES=gender AgeCategory.
create and apply weightvar,

to simulate 49 males, 51 females.
DO IF gender = 'Male’'.

- COMPUTE weightvar=49/52.

ELSE IF gender = 'Female'.

- COMPUTE weightvar=51/48.

END TIF.

WEIGHT BY weightvar.

FREQUENCIES VARIABLES=gender AgeCategory.

m Everything prior to the first FREQUENCIES command simply generates a sample
dataset with 52 males and 48 females.

83

File Operations

m The DO IF structure sets one value of weightvar for males and a different value for
females. The formula used here is: desired proportion/observed proportion. For
males, it is 49/52 (0.94), and for females, it is 51/48 (1.06).

® The WEIGHT command weights cases by the value of weightvar, and the second
FREQUENCIES command displays the weighted distribution.

Note: In this example, the weight values have been calculated in a manner that does
not alter the total number of cases. If the weighted number of cases exceeds the
original number of cases, tests of significance are inflated; if it is smaller, they are
deflated. More flexible and reliable weighting techniques are available in the Complex
Samples add-on module.

Example

You want to calculate measures of association and/or significance tests for a
crosstabulation, but all you have to work with is the summary table, not the raw data
used to construct the table. The table looks like this:

Male Female Total
Under $50K |25 35 60
$50K+ 30 10 40
Total 55 45 100

You then read the data into SPSS, using rows, columns, and cell counts as variables;
then, use the cell count variable as a weight variable.

*weight.sps.
DATA LIST LIST /Income Gender count.
BEGIN DATA

1, 1, 25
1, 2, 35
2, 1, 30
2, 2, 10
END DATA.

VALUE LABELS
Income 1 'Under $50K' 2 'S$50K+'
/Gender 1 'Male' 2 'Female'.

WEIGHT BY count.

CROSSTABS TABLES=Income by Gender
/STATISTICS=CC PHI.

84

Chapter 4

m The values for Income and Gender represent the row and column positions from
the original table, and count is the value that appears in the corresponding cell in
the table. For example, 1, 2, 35 indicates that the value in the first row, second
column is 35. (The Total row and column are not included.)

® The VALUE LABELS command assigns descriptive labels to the numeric codes for
Income and Gender. In this example, the value labels are the row and column
labels from the original table.

® The WEIGHT command weights cases by the value of count, which is the number
of cases in each cell of the original table.

B The CROSSTABS command produces a table very similar to the original and
provides statistical tests of association and significance.

Figure 4-9
Crosstabulation and significance tests for reconstructed table

Income * Gender Crosstabulation

Gender
hale Femalz Tital
Income Under $50K by 35 =]
a0+ a0 10 40
Total 55 45 100

Symmetric Measures

Walue Appro. Sig.
Patminl by Phi -.328 nm
Mominzl Cramer's W 325 0o
Contingency Cosfficient M2 o

I of “alid Cazes 100

Changing File Structure

SPSS expects data to be organized in a certain way, and different types of analysis
may require different data structures. Since your original data can come from many
different sources, the data may require some reorganization before you can create the
reports or analyses that you want.

85

File Operations
Transposing Cases and Variables

You can use the FLIP command to create a new data file in which the rows and
columns in the original data file are transposed so that cases (rows) become variables
and variables (columns) become cases.

Example

Although SPSS expects cases in the rows and variables in the columns, applications
such as Excel don’t have that kind of data structure limitation. So what do you do with
an Excel file in which cases are recorded in the columns and variables are recorded in
the rows?

Figure 4-10
Excel file with cases in columns, variables in rows

EA Microsoft Excel - Aip_excel.xls
J Eile Edit uew Insert Format Tools Data window Help Acrobat = |ﬁ'|5|
DEEHa GRY 4@ o &= & 8 @@ -3 2
B8 -] =|

A [B | ¢ | o | E | F | G 3
|1 MNewton | Boris Kendall Dakota Jasper haggie
| 2 |ID 101 202 303 404 505 F0E
| 3 |Education 12 10 16 18 14 16
| 4 |Income 25,000 22 300 73,500 122525 47,000 32,000
| & |Age] 30 4 37 29 B2
53 v
4| «[» M} Sheetl sheet2 / Sheets / | 4] | L|J_‘
Ready [| [| T

Here are the commands to read the Excel spreadsheet and transpose the rows and
columns:

*flip_excel.sps.

GET DATA /TYPE=XLS
/FILE="'C:\examples\data\flip_excel.xls'
/READNAMES=0N

FLIP VARIABLES=Newton Boris Kendall Dakota Jasper Maggie
/NEWNAME=V1.

RENAME VARIABLES (CASE_LBL = Name) .

B READNAMES=ON in the GET DATA command reads the first row of the Excel
spreadsheet as variable names. Since the first cell in the first row is blank, it is
assigned a default variable name of V1.

86

Chapter 4

B The FLIP command creates a new active dataset in which all of the variables

specified will become cases and all cases in the file will become variables.

B The original variable names are automatically stored as values in a new variable
called CASE_LBL. The subsequent RENAME VARIABLES command changes the
name of this variable to Name.

B NEWNAME=V1 uses the values of variable VI as variable names in the transposed

data file.

Figure 4-1

Original and transposed data in Data Editor

Untitled - SPS5 Data Editor
File Edit Wew Data Transform Analvze Graphs

Litilities

window Help

M= E3

S8 ®| o]~ B =k @ F= SlEE %ol

Cases to Variables

|1IZI:\"'1 |
il Mewtan Boris Kendall Dakota Jasper Waggie ﬂ
1|ID 101 202 303 404 a05 B0B
2|Education 12 10 16 18 14 16
3|Income 25000 22300 73500 122525 47000 32000
4] Age) 30 41 7 29 B2
-
jz"\[)ata View £ Variahle Flle Edit Wiew Data Transform Analyze Graphs Uklities window Help
Bd|S 5] ﬂlﬂl_l =[0| sl Fles| E&|F 32
|9 Marne:
MName In] Education Incarne Age -
1| Meston 101.00 12.00| 25000.00 22.00 ﬂ
2|Boris 202.00 1000 22300.00 30.00
3|Kendall 303.00 16.00| 73500.00 41.00
4|Dakota 404.00 1800 1225250 37.00
a|Jasper 505.00 14.00| 47000.00 29.00
B|Magaie B06.00 16.00| 32000.00 B2.00
7
g -
4 [+ |\ Data view £ variahle View [[l4] | _rlJ
|SPSS Processar is ready =

Sometimes you may need to restructure your data in a slightly more complex manner

than simply flipping rows and columns.

87

File Operations

Many statistical techniques in SPSS are based on the assumption that cases (rows)
represent independent observations and/or that related observations are recorded in
separate variables rather than separate cases. If a data file contains groups of related
cases, you may not be able to use the appropriate statistical techniques (for example,
the Paired Samples T Test or Repeated Measures GLM) because the data are not
organized in the required fashion for those techniques.

In this example, we use a data file that is very similar to the data used in the
AGGREGATE example. For more information, see “Aggregating Data” on p. 79.
Information was collected for every person living in a selected sample of households.
In addition to information for each individual, each case contains a variable that
identifies the household. Cases in the same household represent related observations,
not independent observations, and we want to restructure the data file so that each
group of related cases is one case in the restructured file and new variables are created
to contain the related observations.

Figure 4-12
Data file before restructuring cases to variables
Untitled - SPSS Data Editor M= E3
Eile Edit Yiew Data Transform fnalyze Graphs Ukiliies Window Help
=8| = ﬂlﬂl_l =| k| & Flre| BlEE %
|13 1D_household
D household ID person Incame war -
1 101 1 12345 j
2 101 2 47321
3 101 3 s00
4 102 1 77233
= 102 2 0
G 103 1 19010
7 103 2 98277
g 104 1 101244
9 104 2 53000 =
TITl‘:Bata\ﬁew A variable view 7 || 4] | _bl_l
|SPSS Processar is ready s

The CASESTOVARS command combines the related cases and produces the new
variables.

*casestovars.sps.

GET FILE = 'c:\examples\data\casestovars.sav'
SORT CASES BY ID_household.

CASESTOVARS

88

Chapter 4

/ID = ID_household
/INDEX = ID_person
/SEPARATOR = "_"
/COUNT = famsize.
VARIABLE LABELS

Income_1 "Husband/Father Income"
Income_2 "Wife/Mother Income"
Income_3 "Other Income".

SORT CASES sorts the data file by the variable that will be used to group cases
in the CASESTOVARS command. The data file must be sorted by the variable(s)
specified on the ID subcommand of the CASESTOVARS command.

The ID subcommand of the CASESTOVARS command indicates the variable(s) that
will be used to group cases together. In this example, all cases with the same value
for ID_household will become a single case in the restructured file.

The optional INDEX subcommand identifies the original variables that will be used
to create new variables in the restructured file. Without the INDEX subcommand,
all unique values of all non-ID variables will generate variables in the restructured
file. In this example, only values of ID_person will be used to generate new
variables. Index variables can be either string or numeric. Numeric index values
must be non-missing, positive integers; string index values cannot be blank.

The SEPARATOR subcommand specifies the character(s) that will be used to
separate original variable names and the values appended to those names for the
new variable names in the restructured file. By default, a period is used. You can
use any characters that are allowed in a valid variable name (which means the
character cannot be a space). If you do not want any separator, specify a null string
(SEPARATOR = "").

The cOUNT subcommand will create a new variable that indicates the number of
original cases represented by each combined case in the restructured file.

The VARIABLE LABELS command provides descriptive labels for the new
variables in the restructured file.

89

Figure 4-13

Data file after restructuring cases to variables

Untitled - SPSS Data Editor

M= E3

File Edit “iew D[ata Transform Analyze Graphs Utlities Window Help

Q|| B| o] L) =[] sl Fe| SEE %ol

|'I 3:1D_household |

ID househald farnsize | Income 1| Income 2 | Income 3
101 3 12345 47321 a00
102 2 77233 0
103 2 19010 98277
104 2 101244 B3000

el N el e)

4 [v |\Data View A Variahle view [

R —

|SPSS Processor is ready

slj‘_

Variables to Cases

File Operations

The previous example turned related cases into related variables for use with statistical
techniques that compare and contrast related samples. But sometimes you may need
to do the exact opposite—convert variables that represent unrelated observations to

variables.

Example

A simple Excel file contains two columns of information: income for males and
income for females. There is no known or assumed relationship between male

and female values that are recorded in the same row; the two columns represent
independent (unrelated) observations, and we want to create cases (rows) from the
columns (variables) and create a new variable that indicates the gender for each case.

90

Chapter 4

Figure 4-14
Data file before restructuring variables to cases
Untitled - SPSS Data Editor M=l E3
File Edit Wew Data Transform Analvze Graphs Utilities window Help
=|@|S| ®] »|o] 5 _I =| 0| sl FlrE Bl)
PD Male_Income
Male Incaome Female Income yar war ﬂ
1 12345 47321
2 77233 0
3 19010 0E277
4 101244 F3000
5
B
7 -
|4 [+ |\ Data view £ Wariakle view 7 |4] »
SP3S Processor s ready S

The vARSTOCASES command creates cases from the two columns of data.

*varstocasesl.sps.
GET DATA /TYPE=XLS

/FILE = 'c:\examples\data\varstocases.xls'
/READNAMES = ON.
VARSTOCASES

/MAKE Income FROM Male_Income Female_Income
/INDEX = Gender.
VALUE LABELS Gender 1 'Male' 2 'Female'

B The MAKE subcommand creates a single income variable from the two original
income variables.

B The INDEX subcommand creates a new variable named Gender with integer values
that represent the sequential order in which the original variables are specified on
the MAKE subcommand. A value of 1 indicates that the new case came from the
original male income column, and a value of 2 indicates that the new case came
from the original female income column.

® The VALUE LABELS command provides descriptive labels for the two values
of the new Gender variable.

91

Figure 4-

15

Data file after restructuring variables to cases

Untitled - SPSS Data Editor M= E3
File Edit “ew Data Transform Analvze Graphs Ubilities indow Help
2 S| B o D) =k ol Fl= BlElF %
|‘ID: Gender |
Gender Incarne war war war_ =
1 1 12345 j
2 2 47321
3 1 77233
4 2 0
5 1 19010
B 2 98277
7 1 101244
L&} 2 G3000
g -
| 4 [+ |\Data view A Wariable view 7 || <] | _bl_l
|SPSS Processor is ready A

Example

File Operations

In this example, the original data contain separate variables for two measures taken at
three separate times for each case. This is the correct data structure for most procedures
that compare related observations—but there is one important exception: Linear Mixed
Models (available in the Advanced Statistics add-on module) requires a data structure

in which related observations are recorded as separate cases.

92

Chapter 4
Figure 4-16
Related observations recorded as separate variables
varstocases.say - 5P55 Data Editor _ (O] =]
File Edit “iew Data Transform Analyze Graphs Utiities Window Help
=SR] B o|~| 2 =[] &l Fle EElE B2l
PE%D |
ID | Age | W1 Timel | %1 _Time2 | %1 _Time3 | v2 Timel | %2 Time2 | %2 Time3 -
1) 101 35 1 3 4 3 1 2
21 20| 47 3 4 10 12 12 9
3| 30| 25 1 2 2 4 1 1
4] 40| 39 5 4 9 10 4 7
al 01| 55 10 11 12 20 22 14
g 601 7O 15 16 14 35 37 33
7| 01 19 3 2 2 5 4 2
8| 801| 42 9 10 12 12 10 9
| 01| B3 12 12 15 32 27 28
1011001 22 2 2 2 3 3 3
11 hd
|4 [+ |\Data view £ Variable View [|l | 3|
|SPSS Processor is ready [v

*varstocases2.sps.

GET FILE = 'c:\examples\data\varstocases.sav'.
VARSTOCASES /MAKE V1 FROM V1_Timel V1_Time2 V1_Time3
/MAKE V2 FROM V2_Timel V2_Time2 V2_Time3

/INDEX = Time

/KEEP = ID Age.

m The two MAKE subcommands create two variables, one for each group of three
related variables.

m The INDEX subcommand creates a variable named Time that indicates the
sequential order of the original variables used to create the cases, as specified on
the MAKE subcommand.

® The KEEP subcommand retains the original variables ID and Age.

93

Figure 4-17
Related variables restructured into cases

Untitled - SPSS Data Editor
Eile Edit Yiew Data Transform gnalyee Graphs Ukliies Window Help

I[= E3

=@|8| ®| || B =k @ Fle=| BlEF 3
|‘IS: 1D |?D‘I

10| Age Time 1 W2 var &

1) 101 35 1 1 3

21 10| 38 2 3 1

3 10| 35 3 4 2

41 201 | 47 1 3 12

5| 201 | 47 2 5 15

G| 201| 47 3 10 9

7 301 25 1 1 4

8| 301 25 2 2 1

| 301 25 3 2 1

101 401| 39 1 5 10

11] 401| 39 2 5 4

12] 401| 39 3 9 7

13| 01| 45 1 10 20

14] 501| 55 2 1 22
I‘Il‘l[slmg\?gew fiariable Viewaf |« 1F 1 _pl_l
|SPSS Frocessar is ready A

File Operations

Chapter

Variable and File Properties

In addition to the basic data type (numeric, string, date, etc.), you can assign other
properties that describe the variables and their associated values. You can also
define properties that apply to the entire data file. In a sense, these properties can be
considered metadata—data that describe the data. These properties are automatically
saved with the data when you save the data as an SPSS-format data file.

Variable Properties

You can use variable attributes to provide descriptive information about data and
control how data are treated in analysis, charts, and reports.

W Variable labels and value labels provide descriptive information that make it easier
to understand your data and results.

® Missing value definitions and measurement level affect how variables and specific
data values are treated by statistical and charting procedures.

Example

*define_variables.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (Al)
Income_category (F1l) Religion (F1l) opinionl to opiniond (4F1).

BEGIN DATA

150 11/1/2002 55 m 3 4 51 3 1

272 10/24/02 25 £ 3 9 2 3 4 3

299 10-24-02 900 £ 8 4 2 9 3 4

227 10/29/2002 62 m 9 4 2 3 5 3
216 10/26/2002 39 F 7 3 9 3 2 1
228 10/30/2002 24 £ 4 2 3 515
333 10/29/2002 30 m 2 3 51 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 £ 4 2 2 2 2 5
391 10/21/2002 58 m 1 3 51 5 3

END DATA.

95

96

Chapter 5

FREQUENCIES VARIABLES=opinion3 Income_Category.
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinionl "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price i1s reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opiniond 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opiniond (9).
VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL)
Religion (NOMINAL) .
FREQUENCIES VARIABLES=opinion3 Income_Category.

Figure 5-1
Frequency tables before assigning variable properties
opinion3

Cumulstive

Frequency Percert “alidd Percent Percent
alicd 1 1 100 100 1000
2 3 300 300 40.0
3 2 200 200 600
4 1 100 100 700
3 2 200 200 0.0
9 1 100 100 100.0

Tatal 10 100.0 100.0
Income_category

Cumulative

Frequency Percert “alidd Percent Percent
alicd 1 1 100 100 1000
2 1 100 100 200
3 2 200 200 400
4 3 300 300 oo
7 1 100 100 g0.0
g 1 100 100 q0.0
9 1 100 100 100.0

Tatal 10 1000 100.0

97

Variable and File Properties

® The first FREQUENCIES command, run before any variable properties are assigned,
produces the preceding frequency tables.

® For both variables in the two tables, the actual numeric values do not mean a
great deal by themselves, since the numbers are really just codes that represent
categorical information.

m For opinion3, the variable name itself does not convey any particularly useful
information either.

B The fact that the reported values for opinion3 go from 1 to 5 and then jump to 9
may mean something, but you really cannot tell what.

Figure 5-2

Frequency tables after assigning variable properties

Price is reasonahle

Cumulative
Frecuency Percent “alid Percent Percernt

“alid Strongly Disagres 1 100 1141 1141
Dizagree 3 300 333 44 .4
Ambivalent 2 200 222 BE.T
Arree 1 1000 114 TG
Stronaly Aaree 2 200 222 100.0
Tatal] q0.0 100.0

Mizsing Mo answer 1 100

Tatal 10 100.0

Income category
Cumulative
Freguency Percent Yalid Percent Percert

alic] Under 25k 1 100 143 143
25K to 49K 1 10.0 143 286
S0k to 74K 2 200 236 a7
Tak+ 3 300 429 100.0
Tatal 7 700 100.0

Mizsing Refusedtoanswer 1 100
Con't knosee 1 100
Mo answer 1 100
Tatal 3 300

Tatal 10 100.0

|

The second FREQUENCIES command is exactly the same as the first, except this
time it is run after a number of properties have been assigned to the variables.

By default, any defined variable labels and value labels are displayed in output
instead of variable names and data values. You can also choose to display variable
names and/or data values or to display both names/values and variable and value

98

Chapter 5

labels. (See the SET command and the TVARS and TNUMBERS subcommands in
the SPSS Command Syntax Reference.)

User-defined missing values are flagged for special handling. Many procedures
and computations automatically exclude user-defined missing values. In this
example, missing values are displayed separately and are not included in the
computation of Valid Percent or Cumulative Percent.

If you save the data as an SPSS-format data file, variable labels, value labels,
missing values, and other variable properties are automatically saved with the
data file. You do not need to reassign variable properties every time you open
the data file.

Variable Labels

The VARIABLE LABELS command provides descriptive labels up to 255 bytes long.
Variable names can be up to 64 bytes long, but variable names cannot contain spaces
and cannot contain certain characters. For more information, see ‘“Variables” in the
“Universals” section of the SPSS Command Syntax Reference.

VARIABLE LABELS

Interview_date "Interview date"

Income_category "Income category"

opinionl "Would buy this product"

opinion2 "Would recommend this product to others"

opinion3 "Price is reasonable"

opinion4 "Better than a poke in the eye with a sharp stick".

m The variable labels Interview date and Income category do not provide any
additional information, but their appearance in the output is better than the variable
names with underscores where spaces would normally be.

®m For the four opinion variables, the descriptive variable labels are more informative
than the generic variable names.

Value Labels

You can use the VALUE LABELS command to assign descriptive labels for each
value of a variable. This is particularly useful if your data file uses numeric codes to
represent non-numeric categories. For example, income_category uses the codes 1

99

Missing

Variable and File Properties

through 4 to represent different income ranges, and the four opinion variables use the
codes 1 through 5 to represent level of agreement/disagreement.

VALUE LABELS
Gender "m" "Male" "f" "Female"
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"

/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinionl TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"

4 "Agree" 5 "Strongly Agree" 9 "No answer".

B Value labels can be up to 120 bytes long.

m For string variables, both the values and the labels need to be enclosed in quotes.
Also, remember that string values are case sensitive; "£" "Female" is not the
same as "F" "Female".

B You cannot assign value labels to long string variables (string variables longer
than eight characters).

m Use ADD VALUE LABELS to define additional value labels without deleting
existing value labels.

Values

The MISSING VALUES command identifies specified data values as user missing.
It is often useful to know why information is missing. For example, you might want
to distinguish between data that is missing because a respondent refused to answer
and data that is missing because the question did not apply to that respondent. Data
values specified as user missing are flagged for special treatment and are excluded
from most calculations.

MISSING VALUES
Income_category (7, 8, 9)
Religion opinionl TO opinion4d (9).

B You can assign up to three discrete (individual) missing values, a range of missing
values, or a range plus one discrete value.

m Ranges can be specified only for numeric variables.

B You cannot assign missing values to long string variables (string variables longer
than eight characters).

100

Chapter 5

Measurement Level

You can assign measurement levels (nominal, ordinal, scale) to variables with the
VARIABLE LEVEL command.

VARIABLE LEVEL
Income_category, opinionl to opinion4 (ORDINAL)
Religion (NOMINAL) .

B By default, all new string variables are assigned a nominal measurement level, and
all new numeric variables are assigned a scale measurement level. In our example,
there is no need to explicitly specify a measurement level for Interview_date or
Gender, since they already have the appropriate measurement levels (scale and
nominal, respectively).

B The numeric opinion variables are assigned the ordinal measurement level because
there is a meaningful order to the categories.

B The numeric variable Religion is assigned the nominal measurement level because
there is no meaningful order of religious affiliation. No religion is “higher” or
“lower” than another religion.

For many commands, the defined measurement level has no effect on the results. For a
few commands, however, the defined measurement level can make a difference in the
results and/or available options. These command include: GGRAPH, IGRAPH, XGRAPH,
CTABLES (Tables option), and TREE (Classification Trees option).

Custom Variable Properties

You can use the VARIABLE ATTRIBUTE command to create and assign custom
variable attributes.

Example

VARIABLE ATTRIBUTE VARIABLES=Age Gender Region
ATTRIBUTE=DemographicvVars ('1').

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=DemographicVars.

VARIABLE ATTRIBUTE VARIABLES=Gender
ATTRIBUTE=Binary ("Yes").

DISPLAY ATTRIBUTES.

101

Variable and File Properties

m The first VARTABLE ATTRIBUTE command creates an attribute DemographicVars
and assigns a value of 1 to that attribute for the variables Age, Gender, and Region.

® The second VARIABLE ATTRIBUTE command deletes the attribute
DemographicVars for the variable Age; the attribute is unaffected for the other
two variables.

B The last VARTABLE ATTRIBUTE command creates a second attribute, Binary,
with a value of “Yes” for the variable Gender.

® The DISPLAY command lists the resulting user-defined variable attributes.

Figure 5-3
Userdefined variable attributes

Gender Binary ‘ez
Demographicyars | 1
Redion Demaographicyars | 1

Attribute Arrays

If you append an integer enclosed in square brackets to the end of an attribute name,
the attribute is interpreted as an array of attributes. For example:

VARIABLE ATTRIBUTE VARIABLES=Age
ATTRIBUTE=MyAttribute[99] ('not guite 100').

will create 99 attributes—~MyAttribute[01 | through MyAttribute[99] — and will assign
the value “not quite 100” to the last one.

Example

VARIABLE ATTRIBUTE VARIABLES=Age
ATTRIBUTE=MyAttribute[5] ('5")
MyAttribute[3]('3').
DISPLAY ATTRIBUTES.

Aoge My asttributel1]
Iy Attribute]2]
Wy Attribute(3] | 3
Iy Attribute(4]
Wy Attribute(5] | 5

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=MyAttribute[2].
DISPLAY ATTRIBUTES.

102

Chapter 5

Loe My asttributel1]
Iy Attribute(2] | 3
Ity At ribte] 3]
Wty Attribute(4] | 5

VARIABLE ATTRIBUTE VARIABLES=Age
DELETE=MyAttribute.

® The first VARIABLE ATTRIBUTE command creates five attributes. Even though
only two are explicitly listed in the command, the highest array value (5 in this
example) determines the total number of attributes.

B Asindicated in the table produced by the DISPLAY command, only MyAttribute[3]
and MyAttribute[5] have defined values, with those values being 3 and 5,
respectively.

® The second VARIABLE ATTRIBUTE command deletes MyAttribute[2], which
renumbers the subsequent attribute array names.

B The table produced by the second DISPLAY command indicates that the attribute
value of 3 is now associated with MyAttribute[2] and the value of 5 is now
associated with MyAttribute[4].

® The last VARIABLE ATTRIBUTE command deletes all attributes in the MyAttribute
array, since it specifies the array root name without an integer value in brackets.

Using Variable Properties As Templates

You can reuse the assigned variable properties in a data file as templates for new data
files or other variables in the same data file, selectively applying different properties to
different variables.

Example

The data and the assigned variable properties at the beginning of this chapter are saved
in the SPSS-format data file variable_properties.sav. In this example, we apply some
of those variable properties to a new data file with similar variables.

*apply_ properties.sps.

DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (Al) Income_category
attitudel to attituded (4F1).

BEGIN DATA

456 11/1/2002 55 m 3 51 3 1

(F1)

103

789
131
659
217
399
end

Variable and File Properties

10/24/02 25 £ 3 2 3 4 3
10-24-02 900 £ 8 2 9 3 4
10/29/2002 62 m 9 2 3 5 3
10/26/2002 39 £ 7 9 3 2 1
10/30/2002 24 £ 4 3 515
data.

APPLY DICTIONARY
/FROM 'C:\examples\data\variable_properties.sav'
/SOURCE VARIABLES = Interview_date Age Gender Income_category
/VARINFO ALL.
APPLY DICTIONARY
/FROM 'C:\examples\data\variable_properties.sav'
/SOURCE VARIABLES = opinionl
/TARGET VARIABLES = attitudel attitude2 attitude3 attituded
/VARINFO LEVEL MISSING VALLABELS.

B The first APPLY DICTIONARY command applies all variable properties from the

specified SOURCE VARIABLES in variable_properties.sav to variables in the new
data file with matching names and data types. For example, Income_category in
the new data file now has the same variable label, value labels, missing values,
and measurement level (and a few other properties) as the variable of the same
name in the source data file.

B The second APPLY DICTIONARY command applies selected properties from the

variable opinionl in the source data file to the four attitude variables in the new
data file. The selected properties are measurement level, missing values, and
value labels.

m Since it is unlikely that the variable label for opinionl would be appropriate for all

four attitude variables, the variable label is not included in the list of properties to
apply to the variables in the new data file.

File Properties

File

properties, such as a descriptive file label or comments that describe the change

history of the data, are useful for data that you plan to save and store in SPSS format.

Example

*file_properties.sps.
DATA LIST FREE /varl.
BEGIN DATA

12
END

3
DATA.

FILE LABEL

104

Chapter 5

Fake data generated with Data List and inline data.
ADD DOCUMENT
'Original version of file prior to transformations.'.
DATAFILE ATTRIBUTE ATTRIBUTE=VersionNumber ('1').
SAVE OUTFILE='c:\temp\temp.sav'.
NEW FILE.
GET FILE 'c:\temp\temp.sav'.
DISPLAY DOCUMENTS.
DISPLAY ATTRIBUTES.

Figure 5-4
File properties displayed in output

Hotes

Output Created 03-JAN-2006 14:35:54
Comments
Input Data c:tempitemp say
File Lakel Fake data generated with Data List and
inline data
Fitter =nones=
Weight <nones
Split File =nangs=
Synitam DISPLAY DOCURMEMTS.
Reszources Elapsed Time 0:00:00.00
Document
| 13 | Original wersion of file prior to transformations.

a. Entered 03-Jan-2005

Datafile Attributes

Attribute Walue
“ersionhumber

-

B FILE LABEL creates a descriptive label of up to 64 bytes. The label is displayed
in the Notes table.

B ADD DOCUMENT saves a block of text of any length, along with the date the text
was added to the data file. The text from each ADD DOCUMENT command is
appended to the end of the list of documentation. (Use DROP DOCUMENTS to
delete all document text.) Use DISPLAY DOCUMENTS to display document text.

B DATAFILE ATTRIBUTE creates custom file attributes. You can create data file
attribute arrays using the same conventions used for defining variable attribute
arrays. For more information, see “Custom Variable Properties” on p. 100. Use
DISPLAY ATTRIBUTES to display custom attribute values.

Chapter

Data Transformations

In an ideal situation, your raw data are perfectly suitable for the reports and analyses
that you need. Unfortunately, this is rarely the case. Preliminary analysis may reveal
inconvenient coding schemes or coding errors, or data transformations may be required
in order to coax out the true relationship between variables.

You can perform data transformations ranging from simple tasks, such as collapsing
categories for reports, to more advanced tasks, such as creating new variables based on
complex equations and conditional statements.

Recoding Categorical Variables

You can use the RECODE command to change, rearrange, and/or consolidate values
of a variable. For example, questionnaires often use a combination of high-low and
low-high rankings. For reporting and analysis purposes, you probably want these all
coded in a consistent manner.

*recode.sps.

DATA LIST FREE /opinionl opinion2.

BEGIN DATA

5

4

3

2

1

END DATA.

RECODE opinion?2
(1 =5) (2 =4) (4 =2) (5=1)
(ELSE = COPY)
INTO opinion2_new.

EXECUTE.

VALUE LABELS opinionl opinion2_new
1 'Really bad' 2 'Bad' 3 'Blah’
4 'Good' 5 'Terrific!'.

U W N

105

106

Chapter 6

The RECODE command essentially reverses the values of opinion2.

ELSE = COPY retains the value of 3 (which is the middle value in either direction)
and any other unspecified values, such as user-missing values, which would
otherwise be set to system-missing for the new variable.

B INTO creates a new variable for the recoded values, leaving the original variable
unchanged.

Banding Scale Variables

Creating a small number of discrete categories from a continuous scale variable is
sometimes referred to as banding. For example, you can recode salary data into a few
salary range categories. Although it is not difficult to write command syntax to band a
scale variable into range categories, we recommend that you try the Visual Bander,
available on the Transform menu, because it can help you make the best recoding
choices by showing the actual distribution of values and where your selected category
boundaries occur in the distribution. It also provides a number of different banding
methods and can automatically generate descriptive labels for the banded categories.

107

Data Transformations

Figure 6-1
Visual Bander
¥Yisual Bander
Scanned Yariable List: Marne: Label:
L | \iariable Current Yariable: Isalar-"' ICurrent Sala

Banded Vanable: | |Eurrent Salary [Banded)

Wi |$15,?50 Matrmizsing alues LECTT |$135,UUU

T T T T
§14,750.00

T T T T T T T T T T T T T T
2,808 82 71,267 65 00,026 .47 F127 925 .20

F24,779.4 57,538 .34 35,897 .06 1132 955.88 Fld2,014...
Enter interval cutpoints or click Make Cutpoints for automatic intervalz. & cutpoint walue
. | I _’I o of 10, for example, defines an interval starting above the previous interval and ending at
Grid: 10,
Upper Endpoints

Cases Scanned: 474 il Ltz & Included (<o
$25,000 | == §25,000 Inchuded (=]
Mizzing Values: ID $50,000 |$25,001 - $50,000 ™ Excluded <)

$75,000 |$:50,001 - 75,000

HIGH |§75,001+ Make Cutpaints. .. |
Erom &natherYanable, .. | take Labels |

Tio Other Yariables... | [~ Reverse scale
Qg I Pazte | Reset | Cancell Help |

Copy Bandz

[N N

B The histogram shows the distribution of values for the selected variable. The
vertical lines indicate the banded category divisions for the specified range
groupings.

® In this example, the range groupings were automatically generated using the Make

Cutpoints dialog box, and the descriptive category labels were automatically
generated with the Make Labels button.

B You can use the Make Cutpoints dialog box to create banded categories based on

equal width intervals, equal percentiles (equal number of cases in each category),
or standard deviations.

108

Chapter 6

Figure 6-2
Make Cutpoints dialog box

Make Cutpoints

& Equalwidth Intervals

Apply
r Intervals - fill in at least two fields
First Cutpaint Location: |$25.|JEIEI Cancel |
Mumber of Cutpoints: Help |

ith: 25000

1]

Last Cutpoint Location: $75.000

" Equal Percentiles Based on Scanned Cases
= Irtersals - filllim either hield
Humber of Eutpoints:

1]

st]:

" Cutpoints at Mean and Selected Standard Deviations Based on Scanned Cazes

= +/-1 Std! Deviation
=) +/- 2 5td) Deviation
= +/- 2 5td) Deviation
Apply will replace the current cutpoint definitions with this specification.

A final interval will nchude all remaining walues: N cutpoints produce
M+1 intervals,

You can use the Paste button in the Visual Bander to paste the command syntax
for your selections into a command syntax window. The RECODE command syntax
generated by the Visual Bander provides a good model for a proper recoding method.

*visual_bander.sps.
GET FILE =
commands generated by Visual Bander.
RECODE salary

(MISSING = COPY) (

(LO THRU 75000 =3) (

INTO salary_category.
VARIABLE LABELS salary_category
FORMAT salary_category (F5.0).
VALUE LABELS salary_category

1 '<= $25,000"

2 '$25,001 - $50,000"

3 '$50,001 - $75,000"

4 '$75,001+"

0 'missing’.
MISSING VALUES salary category (
VARIABLE LEVEL salary category (
EXECUTE.

LO THRU HI =

'Current Salary

0).
ORDINAL).

'c:\examples\data\employee data.sav'.

LO THRU 25000 =1) (LO THRU 50000 =2)
=4)

(Banded) '.

109

Data Transformations

® The RECODE command encompasses all possible values of the original variable.

B MISSING = COPY preserves any user-missing values from the original variable.
Without this, user-missing values could be inadvertently combined into a
non-missing category for the new variable.

B The general recoding scheme of LO THRU value ensures that no values fall through
the cracks. For example, 25001 THRU 50000 would not include a value of
25000.50.

B Since the RECODE expression is evaluated from left to right and each original
value is recoded only once, each subsequent range specification can start with LO
because this means the lowest remaining value that has not already been recoded.

B 1O THRU HI includes all remaining values (other than system-missing) not
included in any of the other categories, which in this example should be any salary
value above $75,000.

B INTO creates a new variable for the recoded values, leaving the original variable
unchanged. Since banding or combining/collapsing categories can result in loss of
information, it is a good idea to create a new variable for the recoded values rather
than overwriting the original variable.

B The VALUE LABELS and MISSING VALUES commands generated by the Visual
Bander preserve the user-missing category and its label from the original variable.

Simple Numeric Transformations

You can perform simple numeric transformations using the standard programming
language notation for addition, subtraction, multiplication, division, exponents, and
SO on.

*numeric_transformations.sps.
DATA LIST FREE /varl.
BEGIN DATA

12345

END DATA.

COMPUTE var2 = 1.
COMPUTE var3 = varl*2.

COMPUTE var4
EXECUTE.

((varl*2)**2) /2.

H COMPUTE var2 = 1 creates a constant with a value of 1.

110

Chapter 6

B COMPUTE var3 = varl*2 creates a new variable that is twice the value of varl.

B COMPUTE vard = ((varl*2)**2)/2 first multiplies var! by 2, then squares
that value, and finally divides the result by 2.

Arithmetic and Statistical Functions

In addition to simple arithmetic operators, you can also transform data with a wide
variety of functions, including arithmetic and statistical functions.

*numeric_functions.sps.

DATA LIST LIST (",") /varl var2 var3 vard.
BEGIN DATA

1, , 3, 4

5, 6, 7, 8

9, , , 12

END DATA.

COMPUTE Square_Root = SQRT(vard).

COMPUTE Remainder = MOD(var4, 3).

COMPUTE Average = MEAN.3 (varl, var2, var3, vard).
COMPUTE Valid_Values = NVALID(varl TO var4).
COMPUTE Trunc_Mean = TRUNC (MEAN (varl TO wvard)).
EXECUTE.

m All functions take one or more arguments, enclosed in parentheses. Depending
on the function, the arguments can be constants, expressions, and/or variable
names—or various combinations thereof.

SORT (var4) returns the square root of the value of var4 for each case.

MOD (var4, 3) returns the remainder (modulus) from dividing the value of var4
by 3.

B MEAN.3(varl, var2, var3, var4) returns the mean of the four specified
variables, provided that at least three of them have non-missing values. The divisor
for the calculation of the mean is the number of non-missing values.

B NVALID(varl TO var4) returns the number of valid, non-missing values for the
inclusive range of specified variables. For example, if only two of the variables
have non-missing values for a particular case, the value of the computed variable
is 2 for that case.

B TRUNC (MEAN (varl TO var4)) computes the mean of the values for the
inclusive range of variables and then truncates the result. Since no minimum
number of non-missing values is specified for the MEAN function, a mean will be

m

Data Transformations

calculated (and truncated) as long as at least one of the variables has a non-missing
value for that case.

Figure 6-3
Variables computed with arithmetic and statistical functions

=] Untitled - SPSS Data Editor _ O
File Edit “ew Data Transform Analyze Graphs Utlities Window Help
S|SB 0|~ B =k al £ BlkE 3o
E:mﬂ |
varl | vard | wvard | vard |Sguare_| Remainder| Awerage | %alid_| Trunc_| \4
Root Yalues| Mean
1] 1.00 .| 3.00f 4.00 2.00 1.00 267 300 200
2| 500 500 7000 800 283 2.00 BA500 400 B.00
3| S.00 . S| 12.00 3.46 .00 .| 2.00| 10.00
4
E
B =
|4 [» |\, Data view A Variahle View f 4] | _DI_I
|SPSS Processor is ready [v

For a complete list of arithmetic and statistical functions, see “Transformation
Expressions” in the “Universals” section of the SPSS Command Syntax Reference.

Random Value and Distribution Functions

Random value and distribution functions generate random values based on the
specified type of distribution and parameters, such as mean, standard deviation, or
maximum value.

*random_functons.sps.
NEW FILE.
SET SEED 987987987.
*create 1,000 cases with random values.
INPUT PROGRAM.
- LOOP #I=1 TO 1000.
- COMPUTE Uniform_Distribution = UNIFORM(100) .
- COMPUTE Normal_Distribution = RV.NORMAL (50,25).
- COMPUTE Poisson_Distribution = RV.POISSON(50).
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
FREQUENCIES VARIABLES = ALL
/HISTOGRAM /FORMAT = NOTABLE.

112

Chapter 6

® The INPUT PROGRAM uses a LOOP structure to generate 1,000 cases.

m For each case, UNIFORM (100) returns a random value from a uniform distribution
with values that range from 0 to 100.

H RV.NORMAL (50, 25) returns a random value from a normal distribution with a
mean of 50 and a standard deviation of 25.

B RV.POISSON(50) returns a random value from a Poisson distribution with a
mean of 50.

B The FREQUENCIES command produces histograms of the three variables that show
the distributions of the randomly generated values.

Figure 6-4
Histograms of randomly generated values for different distributions
Uniform_Distribution Normal_Distribution Poisson_Distribution

Random variable functions are available for a variety of distributions, including
Bernoulli, Cauchy, Weibull, and others. For a complete list of random variable
functions, see “Random Variable and Distribution Functions” in the “Universals”
section of the SPSS Command Syntax Reference.

String Manipulation

Since just about the only restriction you can impose on string variables is the maximum
number of characters, string values may often be recorded in an inconsistent manner
and/or contain important bits of information that would be more useful if they could
be extracted from the rest of the string.

13

Data Transformations

Changing the Case of String Values

Perhaps the most common problem with string values is inconsistent capitalization.
Since string values are case sensitive, a value of “male” is not the same as a value of
“Male.” This example converts all values of a string variable to lowercase letters.

*string_ case.sps.

DATA LIST FREE /gender (A6).
BEGIN DATA

Male Female

male female

MALE FEMALE

END DATA.

COMPUTE gender=LOWER (gender) .
EXECUTE.

B The LOWER function converts all uppercase letters in the value of gender to
lowercase letters, resulting in consistent values of “male” and “female.”

B You can use the UPCASE function to convert string values to all uppercase letters.

Combining String Values

You can combine multiple string and/or numeric values to create new string variables.
For example, you could combine three numeric variables for area code, exchange, and
number into one string variable for telephone number with dashes between the values.

*concat_string.sps.

DATA LIST FREE /tell tel2 tel3 (3F4).

BEGIN DATA

111 222 3333

222 333 4444

333 444 5555

555 666 707

END DATA.

STRING telephone (Al2).

COMPUTE telephone =

CONCAT ((STRING (tell, N3)), "-",

(STRING (tel2, N3)),
(STRING (tel3, N4))).

EXECUTE.

B The STRING command defines a new string variable that is 12 characters long.
Unlike new numeric variables, which can be created by transformation commands,
you must define new string variables before using them in any transformations.

114

Chapter 6

® The COMPUTE command combines two string manipulation functions to create the
new telephone number variable.

m The CONCAT function concatenates two or more string values. The general form of
the function is CONCAT (stringl, string2, ...). Each argumentcan be a
variable name, an expression, or a literal string enclosed in quotes.

® Each argument of the CONCAT function must evaluate to a string; so we use the
STRING function to treat the numeric values of the three original variables as
strings. The general form of the function is STRING (value, format). The
value argument can be a variable name, a number, or an expression. The format
argument must be a valid numeric format. In this example, we use N format to
support leading zeros in values (for example, 0707).

® The dashes in quotes are literal strings that will be included in the new string value;
a dash will be displayed between the area code and exchange and between the
exchange and number.

Figure 6-5
Original numeric values and concatenated string values
Untitled - SPSS Data Editor M=l E3
File Edit Yiew Data Transform Analvze Graphs Utilities ‘Window Help
(@8 ®| o] L) =]k @l e SIEE 3o
|8 s tell |
tel | tel2 | tel3 telephone war var ﬂ
1 111| 2223333 |111-222-3333
2| 222| 333 |4444 |222-333-4444
3| 333| 4445555 (333-444-5555
4| 555| 666 707 [555-666-0707
5
G
7 -
4 [» [\ Data view £ Variable View /7 ||4] | »
|SPSS Processor is ready ;
Taking Strings Apart

In addition to being able to combine strings, you can also take them apart.

115

Data Transformations

Example

A dataset contains telephone numbers recorded as strings. You want to create separate
variables for the three values that comprise the phone number. You know that each
number contains 10 digits—but some contain spaces and/or dashes between the three
portions of the number, and some do not.

*replace_substr.sps.

Create some inconsistent sample numbers .
DATA LIST FREE (",") /telephone (Al6).

BEGIN DATA

111-222-3333

222 - 333 - 4444

333 444 5555

4445556666

555-666-0707

END DATA.

*First remove all extraneous spaces and dashes.
STRING #telstr (Al6).

COMPUTE #telstr=REPLACE (telephone, " ", "").
COMPUTE #telstr=REPLACE (#telstxr, "-", "").

*Now extract the parts.

COMPUTE tell=NUMBER (SUBSTR (#telstr, 1, 3), F5).
COMPUTE tel2=NUMBER (SUBSTR (#telstr, 4, 3), F5).
COMPUTE tel3=NUMBER (SUBSTR (#telstr, 7), F5).
EXECUTE.

FORMATS tell tel2 (N3) tel3 (N4).

m The first task is to remove any spaces or dashes from the values, which is
accomplished with the two REPLACE functions. The spaces and dashes are
replaced with null strings, and the telephone number without any dashes or spaces
is stored in the temporary variable #telstr.

® The NUMBER function converts a number expressed as a string to a numeric value.
The basic format is NUMBER (value, format). The value argument can be a
variable name, a number expressed as a string in quotes, or an expression. The
format argument must be a valid numeric format; this format is used to determine
the numeric value of the string. In other words, the format argument says, “Read
the string as if it were a number in this format.”

B The value argument for the NUMBER function for all three new variables is an
expression using the SUBSTR function. The general form of the function is
SUBSTR (value, position, length). The value argument can be a variable
name, an expression, or a literal string enclosed in quotes. The position argument
is a number that indicates the starting character position within the string.

116

Chapter 6

The optional length argument is a number that specifies how many characters
to read starting at the value specified on the position argument. Without the
length argument, the string is read from the specified starting position to the
end of the string value. So SUBSTR ("abcd", 2, 2) would return “be,” and
SUBSTR ("abcd", 2) would return “bed.”

B For fell, SUBSTR (#telstr, 1, 3) defines a substring three characters long,
starting with the first character in the original string.

B For tel2, SUBSTR (#telstr, 4, 3) defines a substring three characters long,
starting with the fourth character in the original string.

m For fel3, SUBSTR (#telstr, 7) defines a substring that starts with the seventh
character in the original string and continues to the end of the value.

B FORMATS assigns N format to the three new variables for numbers with leading
zeros (for example, 0707).

Figure 6-6
Substrings extracted and converted to numbers
BH *Untitle d40 [] - SPSS Data Editor Jo&d
File Edit “iew Data Transform Analvze Graphs Uklities Add-ons Window Help
13 : telephone
telephone | tell | tel2 | tel3 I
11111-222-3333 111 ey 3333
2(|222- 333 - 4444 22 333 4444
3(333 444 5555 333 444 5555
4| 4445556666 444 555 BEEE
5 |555-666-0707 555 EEE o7a7
B
ri b
4+ \Data View £ variahle View f 3 »]]
Example

This example takes a single variable containing first, middle, and last name and creates
three separate variables for each part of the name. Unlike the example with telephone
numbers, you can’t identify the start of the middle or last name by an absolute position
number, because you don’t know how many characters are contained in the preceding
parts of the name. Instead, you need to find the location of the spaces in the value to
determine the end of one part and the start of the next—and some values only contain a
first and last name, with no middle name.

17

Data Transformations

*substr_index.sps.

DATA LIST FREE (",") /name (A20).
BEGIN DATA

Hugo Hackenbush

Rufus T. Firefly

Boris Badenoff

Rocket J. Squirrel

END DATA.

STRING #n fname mname lname (a20).
COMPUTE #n = name.

VECTOR vname=fname TO lname.

LOOP #i = 1 to 2.

- COMPUTE #space = INDEX (#n," ").

- COMPUTE vname (#i) = SUBSTR(#n,1, #space-1).
- COMPUTE #n = SUBSTR (#n, #space+1) .
END LOOP.

COMPUTE lname=#n.

DO IF lname="".

- COMPUTE lname=mname.
- COMPUTE mname="".
END IF.

EXECUTE.

B A temporary (scratch) variable, #n, is declared and set to the value of the original
variable. The three new string variables are also declared.

B The VECTOR command creates a vector vaame that contains the three new string
variables (in file order).

The LOOP structure iterates twice to produce the values for fname and mname.

COMPUTE #space = INDEX (#n," ") creates another temporary variable,
#space, that contains the position of the first space in the string value.

B On the first iteration, COMPUTE vname (#i) = SUBSTR (#n,1, #space-1)
extracts everything prior to the first dash and sets fname to that value.

B COMPUTE #n = SUBSTR (#n, #space+1) then sets #fn to the remaining portion
of the string value after the first space.

B On the second iteration, COMPUTE #space. . . sets #space to the position of the
“first” space in the modified value of #n. Since the first name and first space

have been removed from #n, this is the position of the space between the middle
and last names.

Note: If there is no middle name, then the position of the “first” space is now the
first space after the end of the last name. Since strings values are right-padded to
the defined width of the string variable, and the defined width of #n is the same as

118

Chapter 6

the original string variable, there should always be at least one blank space at the
end of the value after removing the first name.

B COMPUTE vname (#i) ... sets mname to the value of everything up to the “first”
space in the modified version of #n, which is everything after the first space and
before the second space in the original string value. If the original value doesn’t
contain a middle name, then the last name will be stored in mname. (We’ll fix
that later.)

B COMPUTE #n. .. then sets #n to the remaining segment of the string
value—everything after the “first” space in the modified value, which is everything
after the second space in the original value.

m After the two loop iterations are complete, COMPUTE lname=#n sets /name to the
final segment of the original string value.

B The DO IF structure checks to see if the value of Iname is blank. If it is, then the

name only had two parts to begin with, and the value currently assigned to mname
is moved to [name.

Figure 6-7
Substring extraction using INDEX function
BH *Untitled41 [] - SPSS Data Editor (=<
File Edit “ew Data Transform Analyze Graphs Utilities Add-ons Window Help
12 : name
narme | fhiarne | mnarne | Inarme ~
1|Hugo Hackenbush Hugo Hackenbush
2[Rufus T. Firefly Rufus T. Firefly
3|Boris Badenoff Boris Badenaff
4[Rocket J. Squirrel Rocket J Squirrel
5
G
? w
4 v \Data View £ variahle view / < >

Working with Dates and Times

Dates and times come in a wide variety of formats, ranging from different display
formats (for example, 10/28/1986 versus 28-OCT-1986) to separate entries for each
component of a date or time (for example, a day variable, a month variable, and a year

119

Data Transformations

variable). A wide variety of features are available for dealing with dates and times,
including:

® Support for multiple input and display formats for dates and times

m Storing dates and times internally as consistent numbers regardless of the input
format, making it possible to compare date/time values and calculate the difference
between values even if they were not entered in the same format

m Functions that can convert string dates to real dates, extract portions of date values
(such as simply the month or year) or other information that is associated with a
date (such as day of the week), and create calendar dates from separate values
for day, month, and year

Date Input and Display Formats

SPSS automatically converts date information from databases, Excel files, and SAS

files to equivalent SPSS date format variables. SPSS can also recognize dates in text
data files stored in a variety of formats. All you need to do is specify the appropriate
format when reading the text data file.

Date format General form Example SPSS date format
specification
International date dd-mmm-yyyy 28-0OCT-2003 DATE
American date mm/dd/yyyy 10/28/2003 ADATE
Sortable date yyyy/mm/dd 2003/10/28 SDATE
Julian date yyyyddd 2003301 JDATE
Time hh:mm:ss 11:35:43 TIME
Days and time dd hh:mm:ss 15 08:27:12 DTIME
Date and time dd-mmm-yyyy hh:mm:ss | 20-JUN-2003 12:23:01 DATETIME
Day of week (name of day) Tuesday WKDAY
Month of year (name of month) January MONTH

Note: For a complete list of date and time formats, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference.

Example

DATA LIST FREE(" ")
/StartDate (ADATE) EndDate (DATE) .

120

Chapter 6

BEGIN DATA

10/28/2002 28-01-2003
10-29-02 15,03,03
01.01.96 01/01/97
1/1/1997 01-JAN-1998
END DATA.

Both two- and four-digit year specifications are recognized. Use SET EPOCH to
set the starting year for two-digit years.

Dashes, periods, commas, slashes, or blanks can be used as delimiters in the
day-month-year input.

Months can be represented in digits, Roman numerals, or three-character
abbreviations, and they can be fully spelled out. Three-letter abbreviations and
fully spelled out month names must be English month names; month names in
other languages are not recognized.

In time specifications, colons can be used as delimiters between hours, minutes,
and seconds. Hours and minutes are required, but seconds are optional. A period
is required to separate seconds from fractional seconds. Hours can be of unlimited
magnitude, but the maximum value for minutes is 59 and for seconds is 59.999....

Internally, dates and date/times are stored as the number of seconds from October
14, 1582, and times are stored as the number of seconds from midnight.

Note: SET EPOCH has no effect on existing dates in the file. You must set this value
before reading or entering date values. The actual date stored internally is determined
when the date is read; changing the epoch value afterward will not change the century
for existing date values in the file.

Using FORMATS to Change the Display of Dates

Dates in SPSS are often referred to as date-format variables because the dates you see
are really just display formats for underlying numeric values. Using the FORMATS
command, you can change the display formats of a date-format variable, including
changing to a format that displays only a certain portion of the date, such as the month
or day of the week.

Example

FORMATS StartDate (DATE1l) .

121

Data Transformations

m A date originally displayed as 10/28/02 would now be displayed as 10-OCT-2002.

B The number following the date format specifies the display width. DATE9 would
display as 10-OCT-02.

Some of the other format options are shown in the following table:

Original display New format New display
format specification format
10/28/02 SDATE11 2002/10/28
10/28/02 WKDAY7 MONDAY
10/28/02 MONTHI12 OCTOBER
10/28/02 MOYR9 OCT 2002
10/28/02 QYR6 4Q02

The underlying values remain the same; only the display format changes with the
FORMATS command.

Converting String Dates to Date-Format Numeric Variables

Under some circumstances, SPSS may read valid date formats as string variables
instead of date-format numeric variables. For example, if you use the Text Wizard to
read text data files, the wizard reads dates as string variables by default. If the string
date values conform to one of the recognized date formats, it is easy to convert the
strings to date-format numeric variables.

Example

COMPUTE numeric_date = NUMBER (string_ date, ADATE)
FORMATS numeric_date (ADATE10) .

B The NUMBER function indicates that any numeric string values should be converted
to those numbers.

B ADATE tells the program to assume that the strings represent dates of the general
form mm/dd/yyyy. It is important to specify the date format that corresponds to
the way the dates are represented in the string variable, since string dates that

122

Chapter 6

do not conform to that format will be assigned the system-missing value for the
new numeric variable.

m The FORMATS command specifies the date display format for the new numeric
variable. Without this command, the values of the new variable would be displayed
as very large integers.

Date and Time Functions

Many date and time functions are available, including:

B Aggregation functions to create a single date variable from multiple other variables
representing day, month, and year.

® Conversion functions to convert from one date/time measurement unit to

another—for example, converting a time interval expressed in seconds to number
of days.

m Extraction functions to obtain different types of information from date and time

values—for example, obtaining just the year from a date value, or the day of the
week associated with a date.

Note: Date functions that take date values or year values as arguments interpret
two-digit years based on the century defined by SET EPOCH. By default, two-digit
years assume a range beginning 69 years prior to the current date and ending 30 years
after the current date. When in doubt, use four-digit year values.

Aggregating Multiple Date Components into a Single Date-Format Variable

Sometimes, dates and times are recorded as separate variables for each unit of the date.
For example, you might have separate variables for day, month, and year or separate
hour and minute variables for time. You can use the DATE and TIME functions to
combine the constituent parts into a single date/time variable.

Example

COMPUTE datevar=DATE.MDY (month, day, year).

COMPUTE monthyear=DATE.MOYR (month, year).

COMPUTE time=TIME.HMS (hours, minutes).

FORMATS datevar (ADATE10) monthyear (MOYR9) time (TIME9).

123

Data Transformations

B DATE.MDY creates a single date variable from three separate variables for month,
day, and year.

B DATE.MOYR creates a single date variable from two separate variables for month
and year. Internally, this is stored as the same value as the first day of that month.

B TIME.HMS creates a single time variable from two separate variables for hours
and minutes.

® The FORMATS command applies the appropriate display formats to each of the
new date variables.

For a complete list of DATE and TIME functions, see “Date and Time” in the
“Universals” section of the SPSS Command Syntax Reference.

Calculating and Converting Date and Time Intervals

Since dates and times are stored internally in seconds, the result of date and time
calculations is also expressed in seconds. But if you want to know how much time
elapsed between a start date and an end date, you probably do not want the answer in
seconds. You can use CTIME functions to calculate and convert time intervals from
seconds to minutes, hours, or days.

Example

*date_functions.sps.

DATA LIST FREE (",")
/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime (DATETIME20) EndDateTime (DATETIME20)
StartTime (TIME10) EndTime (TIME1O0).

BEGIN DATA

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

END DATA.

COMPUTE days = CTIME.DAYS (EndDate-StartDate) .

COMPUTE hours = CTIME.HOURS (EndDateTime-StartDateTime) .

COMPUTE minutes = CTIME.MINUTES (EndTime-StartTime) .

EXECUTE.

B CTIME.DAYS calculates the difference between EndDate and StartDate in
days—in this example, 40 days.

124

Chapter 6

B CTIME.HOURS calculates the difference between EndDateTime and StartDateTime
in hours—in this example, 24 hours.

B CTIME.MINUTES calculates the difference between EndTime and StartTime in
minutes—in this example, 45 minutes.

Calculating Number of Years between Dates

You can use the DATEDIFF function to calculate the difference between two dates in
various duration units. The general form of the function is:

DATEDIFF (datetime2, datetimel, “unit”)

where datetime2 and datetimel are both date or time format variables (or numeric
values that represent valid date/time values), and “unit” is one of the following string
literal values enclosed in quotes: years, quarters, months, weeks, hours, minutes, or
seconds.

Example

*datediff.sps.

DATA LIST FREE /BirthDate StartDate EndDate (3ADATE).

BEGIN DATA

8/13/1951 11/24/2002 11/24/2004

10/21/1958 11/25/2002 11/24/2004

END DATA.

COMPUTE Age=DATEDIFF (STIME, BirthDate, 'years').

COMPUTE DurationYears=DATEDIFF (EndDate, StartDate, 'years').
COMPUTE DurationMonths=DATEDIFF (EndDate, StartDate, 'months').
EXECUTE.

B Age in years is calculated by subtracting BirthDate from the current date, which
we obtain from the system variable $TIME.

® The duration of time between the start date and end date variables is calculated in
both years and months.

B The DATEDIFF function returns the truncated integer portion of the value in the
specified units. In this example, even though the two start dates are only one day
apart, that results in a one-year difference in the values of DurationYears for the
two cases (and a one-month difference for DurationMonths).

125

Data Transformations

Adding to or Subtracting from a Date to Find Another Date

If you need to calculate a date that is a certain length of time before or after a given
date, you can use the TIME.DAYS function.

Example

Prospective customers can use your product on a trial basis for 30 days, and you need
to know when the trial period ends—and just to make it interesting, if the trial period
ends on a Saturday or Sunday, you want to extend it to the following Monday.

*date_functions2.sps.

DATA LIST FREE (" ") /StartDate (ADATE1O0).
BEGIN DATA

10/29/2003 10/30/2003

10/31/2003 11/1/2003

11/2/2003 11/4/2003

11/5/2003 11/6/2003

END DATA.

COMPUTE expdate = StartDate + TIME.DAYS(30).
FORMATS expdate (ADATELO0).

if expdate is Saturday or Sunday, make it Monday.
DO IF (XDATE.WKDAY (expdate) = 1).

- COMPUTE expdate = expdate + TIME.DAYS(1).
ELSE IF (XDATE.WKDAY (expdate) = 7).

- COMPUTE expdate = expdate + TIME.DAYS(2).
END TF.

EXECUTE.

B TIME.DAYS (30) adds 30 days to StartDate, and then the new variable expdate
is given a date display format.

B The DO IF structure uses an XDATE . WKDAY extraction function to see if expdate is
a Sunday (1) or a Saturday (7), and then adds one or two days, respectively.

Example

You can also use the DATESUM function to calculate a date that is a specified length
of time before or after a specified date.

*datesum. sps.

DATA LIST FREE /StartDate (ADATE).
BEGIN DATA

10/21/2003

10/28/2003

10/29/2004

END DATA.

126

Chapter 6

COMPUTE ExpDate=DATESUM(StartDate, 3, 'vyears').
EXECUTE.
FORMATS ExpDate (ADATELO0) .

B FExpDate is calculated as a date three years after StartDate.

B The DATESUM function returns the date value in standard numeric format,
expressed as the number of seconds since the start of the Gregorian calendar in
1582; so, we use FORMATS to display the value in one of the standard date formats.

Extracting Date Information

A great deal of information can be extracted from date and time variables. In addition
to using XDATE functions to extract the more obvious pieces of information, such as
year, month, day, hour, and so on, you can obtain information such as day of the week,
week of the year, or quarter of the year.

Example

*date_functions3.sps.
DATA LIST FREE (", ")

/StartDateTime (datetime25).
BEGIN DATA
29-0CT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE (StartDateTime) .
FORMATS dateonly (ADATELO0) .
COMPUTE hour=XDATE.HOUR (StartDateTime) .
COMPUTE DayofWeek=XDATE.WKDAY (StartDateTime) .
COMPUTE WeekofYear=XDATE.WEEK (StartDateTime) .
COMPUTE quarter=XDATE.QUARTER (StartDateTime) .
EXECUTE.

127

Data Transformations

Figure 6-8
Extracted date information
Untitled - SPSS Data Editor H=] E3
Eile Edit Wiew Data Transform gnalyze Graphs Ubilities Window Help
&S| 8] o] L] k| al Fle= EEE 32
|5 : StartDateTime |
StartDateTime dateanly hour Dayofieek | YWeekoftear guarter 3
1 29-0CT-2003 11:23] 10/2903 11.00 4.00 44.00 4.00
2 01-JAN-1993 01:45 01/01/93 1.00 5.00 1.00 1.00
3 21-JUN-2000 02:55 | 0B/21/00 2.00 4.00 25.00 2.00
4 -
<[+ ' Data View £ Variable View 7 KN | P

m The date portion extracted with XDATE . DATE returns a date expressed in seconds;

s0, we also include a FORMATS command to display the date in a readable date
format.

m Day of the week is an integer between 1 (Sunday) and 7 (Saturday).
B Week of the year is an integer between 1 and 53 (January 1-7 = 1).

For a complete list of XDATE functions, see “Date and Time” in the “Universals”
section of the SPSS Command Syntax Reference.

Chapter

7

Cleaning and Validating Data

Invalid—or at least questionable—data values can include anything from simple
out-of-range values to complex combinations of values that should not occur.

Finding and Displaying Invalid Values

The first step in cleaning and validating data is often to simply identify and investigate
questionable values.

Example

All of the variables in a file may have values that appear to be valid when examined
individually, but certain combinations of values for different variables may indicate
that at least one of the variables has either an invalid value or at least one that is
suspect. For example, a pregnant male clearly indicates an error in one of the values,
whereas a pregnant female older than 55 may not be invalid but should probably be
double-checked.

*invalid_data3.sps.

DATA LIST FREE /age gender pregnant.

BEGIN DATA

25 0 0

12 1 0

80 1 1

47 0 0

34 0 1

9 11

19 0 0

27 0 1

END DATA.

VALUE LABELS gender 0 'Male' 1 'Female'
/pregnant 0 'No' 1 'Yes'.

DO IF pregnant = 1.

- DO IF gender = 0.

- COMPUTE valueCheck = 1.

129

130

Chapter 7

ELSE IF gender = 1.
DO IF age > 55.
COMPUTE valueCheck
ELSE IF age < 12.
COMPUTE valueCheck
END IF.
END TIF.

1l
[\S)

1l
w

ELSE.

COMPUTE valueCheck=0.

END IF.
VALUE LABELS valueCheck

0 'No problems detected'

1 'Male and pregnant'

2 'Age > 55 and pregnant'
3 'Age < 12 and pregnant'.

FREQUENCIES VARIABLES = valueCheck.

B The variable valueCheck is first set to 0.

B The outer DO IF structure restricts the actions for all transformations within the
structure to cases recorded as pregnant (pregnant = 1).

B The first nested DO IF structure checks for males (gender = 0) and assigns
those cases a value of 1 for valueCheck.

B For females (gender = 1), a second nested DO IF structure, nested within the
previous one, is initiated, and valueCheck is set to 2 for females over the age of 55
and 3 for females under the age of 12.

B The VALUE LABELS command assigns descriptive labels to the numeric values of
valueCheck, and the FREQUENCIES command generates a table that summarizes
the results.

Figure 7-1

Frequency table summarizing detected invalid or suspect values

valueCheck

Cumulative
Freqguency Percent Yalid Percert Percert

walicl Mo problems detected 4 S0.0 0.0 0.0

hlale and pregnant 2 250 250 5.0

Age = 55 and pregnant 1 1245 125 ars

Age = 12 and pregnant 1 125 125 1000
g

Total 100.0 100.0

131

Cleaning and Validating Data

Example

A data file contains a variable quantity that represents the number of products sold to
a customer, and the only valid values for this variable are integers. The following
command syntax checks for and then reports all cases with non-integer values.

*invalid_data.sps.

*First we provide some simple sample data.

DATA LIST FREE /quantity.

BEGIN DATA

1 1.1 25 8.01

END DATA.

*Now we look for non-integers values
in the sample data.

COMPUTE filtervar=(MOD(quantity,1)>0).

FILTER BY filtervar.

SUMMARIZE
/TABLES=quantity
/FORMAT=LIST CASENUM NOTOTAL
/CELLS=COUNT.

FILTER OFF.

Figure 7-2
Table listing all cases with non-integer values

Case hNumber guantity

1 2 140
2 E 8.0
2

® The COMPUTE command creates a new variable, filtervar. If the remainder (the
MOD function) of the original variable (quantity) divided by 1 is greater than 0,
then the expression is true and filtervar will have a value of 1, resulting in all
non-integer values of quantity having a value of 1 for filtervar. For integer values,
filtervar is set to 0.

B The FILTER command filters out any cases with a value of O for the specified filter
variable. In this example, it will filter out all of the cases with integer values for
quantity, since they have a value of 0 for filtervar.

B The SUMMARIZE command simply lists all of the nonfiltered cases, providing both
the case number and the value of quantity for each case, and a table listing all
of the cases with non-integer values.

B The second FILTER command turns off filtering, making all cases available for
subsequent procedures.

132

Chapter 7
Excluding Invalid Data from Analysis

With a slight modification, you can change the computation of the filter variable in
the above example to filter out cases with invalid values:

COMPUTE filtrvar=(MOD (quantity,1)=0).
FILTER BY filtrvar.

® Now all cases with integer values for quantity have a value of 1 for the filter
variable, and all cases with non-integer values for quantity are filtered out because
they now have a value of 0 for the filter variable.

m This solution filters out the entire case, including valid values for other variables in
the data file. If, for example, another variable recorded total purchase price, any
case with an invalid value for quantity would be excluded from computations
involving total purchase price (such as average total purchase price), even if that
case has a valid value for total purchase price.

A better solution is to assign invalid values to a user-missing category, which identifies
values that should be excluded or treated in a special manner for that specific variable,
leaving other variables for cases with invalid values for quantity unaffected.

*invalid_data2.sps.

DATA LIST FREE /quantity.

BEGIN DATA

1 1.1 2 5 8.01

END DATA.

IF (MOD(guantity,1l) > 0) quantity = (-9).
MISSING VALUES quantity (-9).

VALUE LABELS quantity -9 "Non-integer values".

B The IF command assigns a value of -9 to all non-integer values of quantity.

® The MISSING VALUES command flags quantity values of -9 as user-missing,
which means that these values will either be excluded or treated in a special
manner by most procedures.

® The VALUE LABELS command assigns a descriptive label to the user-missing
value.

133

Cleaning and Validating Data

Finding and Filtering Duplicates

Duplicate cases may occur in your data for many reasons, including:
® Data-entry errors in which the same case is accidently entered more than once.

® Multiple cases that share a common primary ID value but have different secondary
ID values, such as family members who live in the same house.

m Multiple cases that represent the same case but with different values for variables
other than those that identify the case, such as multiple purchases made by the
same person or company for different products or at different times.

The Identify Duplicate Cases dialog box (Data menu) provides a number of useful
features for finding and filtering duplicate cases. You can paste the command syntax
from the dialog box selections into a command syntax window and then refine the
criteria used to define duplicate cases.

Example

In the data file duplicates.sav, each case is identified by two ID variables: ID_house,
which identifies each household, and ID_person, which identifies each person within
the household. If multiple cases have the same value for both variables, then they
represent the same case. In this example, that is not necessarily a coding error, since
the same person may have been interviewed on more than one occasion.

The interview date is recorded in the variable int_date, and for cases that match on
both ID variables, we want to ignore all but the most recent interview.

* duplicates_filter.sps.
GET FILE='c:\examples\data\duplicates.sav'.
SORT CASES BY ID_house(A) ID_person(A) int_date(A)
MATCH FILES /FILE = *

/BY ID_house ID_person /LAST = MostRecent
FILTER BY MostRecent
EXECUTE.

B SORT CASES sorts the data file by the two ID variables and the interview date.
The end result is that all cases with the same household ID are grouped together,
and within each household, cases with the same person ID are grouped together.
Those cases are sorted by ascending interview date; for any duplicates, the last
case will be the most recent interview date.

134

Chapter 7

Although MATCH FILES is typically used to merge two or more data files, you
can use FILE=* to match the active dataset with itself. In this case, that is useful
not because we want to merge data files but because we want another feature of
the command—the ability to identify the LAST case for each value of the key
variables specified on the BY subcommand.

BY ID_house ID_person defines a match as cases having the same values for
those two variables. The order of the BY variables must match the sort order of
the data file. In this example, the two variables are specified in the same order on
both the SORT CASES and MATCH FILES commands.

LAST = MostRecent assigns a value of 1 for the new variable MostRecent to
the last case in each matching group and a value of 0 to all other cases in each
matching group. Since the data file is sorted by ascending interview date within the
two ID variables, the most recent interview date is the last case in each matching
group. If there is only one case in a “group,” then it is also considered the “last”
case and is assigned a value of 1 for the new variable MostRecent.

FILTER BY MostRecent filters out any cases with a value of 0 for MostRecent,
which means that all but the case with the most recent interview date in each
duplicate group will be excluded from reports and analyses. Filtered-out cases are
indicated with a slash through the row number in Data View in the Data Editor.

Figure 7-3
Filtered duplicate cases in Data View

duplicates.sav - SP55 Data Editor M=l E3
File Edit Wiew Data Transform Analvze Graphs Utilities Window Help

=8| B o|-| L] =[] @ Ee=| BlE(E S

|13: |0_house |

I house | 1D person int_date gender | MostRecent | =
1 101 1 0841372002 a 1 j

2 101 20 10s2152002 1 1

3 101 3| 1042852003 1 1

4 101 41 1243152002 1 1]

5 101 41 1042952003 1 1

102 1 0707 /2002 a 1]

102 1 101272002 a 1]

g 102 1 01/15/2003 a 1

g 102 20 0941972002 a 1

10 103 1 120172002 1 1
11 104 1 04032002 1 1=
|4 [[\Data view Lvariaklewiew /7 |4 | _>|_|
[4

|SPSS Processar is ready

135

Cleaning and Validating Data

Example

You may not want to automatically exclude duplicates from reports; you may want to
examine them before deciding how to treat them. You could simply omit the FILTER
command at the end of the previous example and look at each group of duplicates in
the Data Editor, but if there are many variables and you are interested in examining
only the values of a few key variables, that might not be the optimal approach.

This example counts the number of duplicates in each group and then displays a
report of a selected set of variables for all duplicate cases, sorted in descending order
of the duplicate count, so the cases with the largest number of duplicates are displayed
first.

*duplicates_count.sps.

GET FILE='c:\examples\data\duplicates.sav'.

AGGREGATE OUTFILE = * MODE = ADDVARIABLES
/BREAK = ID_house ID_person
/DuplicateCount = N.

SORT CASES BY DuplicateCount (D).

COMPUTE filtervar=(DuplicateCount > 1).

FILTER BY filtervar.

SUMMARIZE
/TABLES=ID_house ID_person int_date DuplicateCount
/FORMAT=LIST NOCASENUM TOTAL
/TITLE='Duplicate Report'
/CELLS=COUNT.

B The AGGREGATE command is used to create a new variable that represents the
number of cases for each pair of ID values.

B OUTFILE = * MODE = ADDVARIABLES writes the aggregated results as new
variables in the active dataset. (This is the default behavior.)

B The BREAK subcommand “aggregates” cases with matching values for the two ID
variables. In this example, that simply means that each case with the same two
values for the two ID variables will have the same values for any new variables
based on aggregated results.

B DuplicateCount = N creates a new variable that represents the number of
cases for each pair of ID values. For example, the DuplicateCount value of 3 is
assigned to the three cases in the active dataset with the values of 102 and 1 for
ID_house and ID_person, respectively.

B The SORT CASES command sorts the data file in descending order of the values of
DuplicateCount, so cases with the largest numbers of duplicates will be displayed
first in the subsequent report.

136

Chapter 7

COMPUTE filtervar=(DuplicateCount > 1) creates a new variable with a
value of 1 for any cases with a DuplicateCount value greater than 1 and a value of
0 for all other cases. So, all cases that are considered “duplicates” have a value of
1 for filtervar, and all unique cases have a value of 0.

FILTER BY filtervar selects all cases with a value of 1 for filtervar and filters
out all other cases. So, subsequent procedures will include only duplicate cases.

The sUMMARIZE command produces a report of the two ID variables, the interview
date, and the number of duplicates in each group for all duplicate cases. It also
displays the total number of duplicates. The cases are displayed in the current file
order, which is in descending order of the duplicate count value.

Figure 7-4
Summary report of duplicate cases

Duplicate Report

Household ID Person D Irterview date | DuplicateCount
1 102 1 OFoyr200z 3
2 102 1 10M 202002 3
3 102 1 011502003 3
4 101 4 120352002 2
a 101 4 1052952003 2
Tatal M 5 5 3 5

Data Validation Option

The Data Validation option provides two validation procedures:

B VALIDATEDATA provides the ability to define and apply validation rules that

identify invalid data values. You can create rules that flag out-of-range values,
missing values, or blank values. You can also save variables that record individual
rule violations and the total number of rule violations per case.

DETECTANOMALY finds unusual observations that could adversely affect
predictive models. The procedure is designed to quickly detect unusual cases for
data-auditing purposes in the exploratory data analysis step, prior to any inferential
data analysis. This algorithm is designed for generic anomaly detection; that is, the
definition of an anomalous case is not specific to any particular application, such
as detection of unusual payment patterns in the healthcare industry or detection of
money laundering in the finance industry, in which the definition of an anomaly
can be well-defined.

137

Cleaning and Validating Data
Example

This example illustrates how you can use the Data Validation procedures to perform

a simple, initial evaluation of any dataset, without defining any special rules for
validating the data. The procedures provide many features not covered here (including
the ability to define and apply custom rules).

*data_validation.sps

create some sample data.

INPUT PROGRAM.

SET SEED 123456789.

LOOP #i=1 to 1000.

- COMPUTE notCategorical=RV.NORMAL (200,40) .
- DO IF UNIFORM(100) < 99.8.

- COMPUTE mostlyConstant=1.

- COMPUTE mostlyNormal=RV.NORMAL (50,10).
- ELSE.

- COMPUTE mostlyConstant=2.

- COMPUTE mostlyNormal=500.

- END IF.

- END CASE.

END LOOP.

END FILE.

END INPUT PROGRAM.

VARIABLE LEVEL notCategorical mostlyConstant (nominal) .
****Here's the real job****,
VALIDATEDATA VARIABLES=ALL.
DETECTANOMALY .

® The input program creates some sample data with a few notable anomalies,
including a variable that is normally distributed, with the exception of a small
proportion of cases with a value far greater than all of the other cases, and a
variable where almost all of the cases have the same value. Additionally, the scale
variable notCategorical has been assigned the nominal measurement level.

B VALIDATEDATA performs the default data validation routines, including checking
for categorical (nominal, ordinal) variables where more than 95% of the cases have
the same value or more than 90% of the cases have unique values.

B DETECTANOMALY performs the default anomaly detection on all variables in the
dataset.

138

Chapter 7

Figure 7-5
Results from VALIDATEDATA

Variable Checks

Categorical Cases Constant = 95.0% mostlyConstant
Categories Containing
one Case = 90.0%

Each variable is reported with every check it fails.

notCategorical

Figure 7-6
Results from DETECTANOMALY

Anomaly Case Index List

Case Anomaly Index
a1 16.296
433 16.296
ar1 16.296

Anoemaly Case Reason List

Case Reason Yariable “ariable mpact | Yariahle Value | “ariable Morm
a1 mostlyMarmal 800 500.00 51.849
483 mostlyormal .an0 200,00 51,89
a7 mostlyMormal 300 500.00 51.88

B The default VALIDATEDATA evaluation detects and reports that more than 95%
of cases for the categorical variable mostlyConstant have the same value and
more than 90% of cases for the categorical variable norCategorical have unique
values. The default evaluation, however, found nothing unusual to report in the
scale variable mostlyNormal.

B The default DETECTANOMALY analysis reports any case with an anomaly index of
2 or more. In this example, three cases have an anomaly index of over 16. The
Anomaly Case Reason List table reveals that these three cases have a value of 500
for the variable mostlyNormal, while the mean value for that variable is only 52.

Chapter

Conditional Processing, Looping,
and Repeating

As with other programming languages, SPSS contains standard programming
structures that can be used to do many things. These include the ability to:

Perform actions only if some condition is true (if/then/else processing).
Repeat actions.
Create an array of elements.

Use loop structures.

Indenting Commands in Programming Structures

Indenting commands nested within programming structures is a fairly common
convention that makes code easier to read and debug. For compatibility with batch
production mode, however, each SPSS command should begin in the first column of a
new line. You can indent nested commands by inserting a plus (+) or minus (—) sign or
a period (.) in the first column of each indented command, as in:

DO
+
+
+
+

REPEAT tempvar = varl, var2, var3.
COMPUTE tempvar = tempvar/10.

DO IF (tempvar >= 100). /*Then divide by 10 again.
COMPUTE tempvar = tempvar/10.
END IF.

END REPEAT.

139

140

Chapter 8

Conditional Processing

Conditional processing with SPSS commands is performed on a casewise basis: each
case is evaluated to determine if the condition is met. This is well-suited for tasks
such as setting the value of a new variable or creating a subset of cases based on the
value(s) of one or more existing variables.

Note: Conditional processing or flow control on a jobwise basis—such as running
different procedures for different variables based on data type or level of measurement
or determining which procedure to run next based on the results of the last
procedure—typically requires the type of functionality available only with the
programmability features discussed in the second part of this book.

Conditional Transformations

There are a variety of methods for performing conditional transformations, including:
B Logical variables
B One or more IF commands, each defining a condition and an outcome

m If/then/else logic in a DO IF structure

Example

*1if_doifl.sps.

DATA LIST FREE /varl.
BEGIN DATA

1234

END DATA.

COMPUTE newvarl=(varl<3).
IF (varl<3) newvar2=1.
IF (varl>=3) newvar2=0.
DO IF varl<3.

- COMPUTE newvar3=1.
ELSE.

- COMPUTE newvar3=0.
END IF.

EXECUTE.

B The logical variable newvarl will have a value of 1 if the condition is true, a value
of 0 if it is false, and system-missing if the condition cannot be evaluated due to
missing data. While it requires only one simple command, logical variables are
limited to numeric values of 0, 1, and system-missing.

141

Conditional Processing, Looping, and Repeating

® The two IF commands return the same result as the single COMPUTE command
that generated the logical variable. Unlike the logical variable, however, the result
of an IF command can be virtually any numeric or string value, and you are not
limited to two outcome results. Each TF command defines a single conditional
outcome, but there is no limit to the number of IF commands you can specify.

B The DO IF structure also returns the same result—and, like the IF commands,
there is no limit on the value of the outcome or the number of possible outcomes.

Example

As long as all the conditions are mutually exclusive, the choice between IF and DO
IF may often be a matter of preference, but what if the conditions are not mutually
exclusive?

*1if_doif2.sps

DATA LIST FREE /varl var2.
BEGIN DATA

11

21

END DATA.

IF (varl=1l) newvarl=1.
IF (var2=1) newvarl=2.
DO IF varl=1.

- COMPUTE newvar2=1.
ELSE IF var2=1.

- COMPUTE newvar2=2.
END IF.

EXECUTE.

m The two IF statements are not mutually exclusive, since it’s possible for a case to
have a value of 1 for both varl and var2. The first IF statement will assign a value
of 1 to newvarl for the first case, and then the second IF statement will change
the value of newvarl to 2 for the same case. In IF processing, the general rule
is “the last one wins.”

®m The DO IF structure evaluates the same two conditions, with different results. The
first case meets the first condition and the value of newvar2 is set to 1 for that
case. At this point, the DO IF structure moves on to the next case, because once a
condition is met, no further conditions are evaluated for that case. So the value
of newvar2 remains 1 for the first case, even though the second condition (which
would set the value to 2) is also true.

142

Chapter 8

Missing Values in DO IF Structures

Missing values can affect the results from DO IF structures because if the expression
evaluates to missing, then control passes immediately to the END IF command at that
point. To avoid this type of problem, you should attempt to deal with missing values
first in the DO IF structure before evaluating any other conditions.

* doif_elseif_missing.sps.

*create sample data with missing data.
DATA LIST FREE (",") /a.

BEGIN DATA

i, , 1, ,

END DATA.

COMPUTE b=a.

* The following does NOT work since the second condition is never evaluated.
DO IF a=1.

- COMPUTE al=1l.

ELSE IF MISSING(a) .

- COMPUTE al=2.

END TIF.

* On the other hand the following works.
DO IF MISSING (b).

- COMPUTE bl=2.

ELSE IF b=1.

- COMPUTE bl=1.

END TIF.

EXECUTE.

B The first DO IF will never yield a value of 2 for al, because if a is missing, then
DO IF a=1 evaluates as missing, and control passes immediately to END IF. So
al will either be 1 or missing.

B In the second DO IF, however, we take care of the missing condition first; so if
the value of b is missing, DO IF MISSING (b) evaluates as true and b1 is set
to 2; otherwise, bl is set to 1.

In this example, DO IF MISSING (b) will always evaluate as either true or false, never
as missing, thereby eliminating the situation in which the first condition might evaluate
as missing and pass control to END IF without evaluating the other condition(s).

143

Conditional Processing, Looping, and Repeating

Figure 8-1
DO IF results with missing values displayed in Data Editor
Untitled - SPSS Data Editor [O]
File Edit WYiew Data Transform Analyze Graphs Utilties ‘Window Help
SRS = || 2 =k sl FHee| ElEE[% g
F:a |
a b al b1 war -
1 1.00 1.00 1.00 1.00 ﬂ
2 . . . 2.00
3 1.00 1.00 1.00 1.00
4 2.00
5 -
|4 [+ |\Data view {Wariable Wiew / || 4] |]
|5PSS Processor is ready o

Conditional Case Selection

If you want to select a subset of cases for analysis, you can either filter or delete the
unselected cases.

Example

*filter_select_if.sps.

DATA LIST FREE /varl.

BEGIN DATA

12323

END DATA.

DATASET NAME filter.

DATASET COPY temporary.

DATASET COPY select_if.

*compute and apply a filter variable.
COMPUTE filterVar=(varl ~=3).

FILTER By filtervar.

FREQUENCIES VARIABLES=varl.

*delete unselected cases from active dataset.
DATASET ACTIVATE select_if.

SELECT IF (varl~=3).

FREQUENCIES VARIABLES=varl.
*temporarily exclude unselected cases.
DATASET ACTIVATE temporary.
TEMPORARY .

SELECT IF (varl~=3).

FREQUENCIES VARIABLES=varl.
FREQUENCIES VARIABLES=varl.

144

Chapter 8

The cOMPUTE command creates a new variable, filterVar. If varl is not equal to 3,
filterVar is set to 1; if varl is 3, filterVar is set to 0.

The FILTER command filters cases based on the value of filterVar. Any case with
a value other than 1 for filterVar is filtered out and is not included in subsequent
statistical and charting procedures. The cases remain in the dataset and can be
“reactivated” by changing the filter condition or turning filtering off (FILTER
OFF). Filtered cases are marked in the Data Editor with a diagonal line (slash)
through the row number.

SELECT IF deletes unselected cases from the active dataset, and those cases are
no longer available in that dataset.

The combination of TEMPORARY and SELECT IF temporarily deletes the
unselected cases. SELECT IF is a transformation, and TEMPORARY signals

the beginning of temporary transformations that are in effect only for the next
command that reads the data. For the first FREQUENCIES command following
these commands, cases with a value of 3 for varl are excluded. For the second
FREQUENCIES command, however, cases with a value of 3 are now included again.

Simplifying Repetitive Tasks with DO REPEAT

A DO REPEAT structure allows you to repeat the same group of transformations
multiple times, thereby reducing the number of commands that you need to write. The
basic format of the command is:

DO REPEAT stand-in variable = variable or value list

/optional additional stand-in variable(s)

transformation commands
END REPEAT PRINT.

The transformation commands inside the DO REPEAT structure are repeated for
each variable or value assigned to the stand-in variable.

Multiple stand-in variables and values can be specified in the same DO REPEAT
structure by preceding each additional specification with a forward slash.

The optional PRINT keyword after the END REPEAT command is useful when
debugging command syntax, since it displays the actual commands generated
by the DO REPEAT structure.

Note that when a stand-in variable is set equal to a list of variables, the variables do
not have to be consecutive in the data file. So DO REPEAT may be more useful than
VECTOR in some circumstances. For more information, see “Vectors” on p. 147.

145

Conditional Processing, Looping, and Repeating

Example

This example sets two variables to the same value.

* do_repeatl.sps.

create some sample data.
DATA LIST LIST /varl var3 id var2.
BEGIN DATA

3333

22 2 2

END DATA.

real job starts here,

DO REPEAT v=varl var2.

- COMPUTE v=99.

END REPEAT.

EXECUTE.
Figure 8-2
Two variables set to the same constant value
=] Untitled - SPSS Data Editor _ O] x|
File Edit Mew Data Transform Analyze Graphs Ublities Window Help
S|=|8| B o|-| D) =|k| ol | BlwE ®
E s varl |
yvarl yard id var2 var 3
1 9900 3.00 3.00 9900
2 9900 2.00 200 9900
3
4 |
4 [» |\ Data View £ variableiew 7 4] | P

m The two variables assigned to the stand-in variable v are assigned the value 99.

m If the variables don’t already exist, they are created.

Example

You could also assign different values to each variable by using two stand-in variables:
one that specifies the variables and one that specifies the corresponding values.

* do_repeat2.sps.

create some sample data.
DATA LIST LIST /varl var3 id var2.
BEGIN DATA

3333

2222

END DATA.

146

Chapter 8

real job starts here,
DO REPEAT v=varl TO var2 /val=1l 3 5 7.
- COMPUTE v=val.
END REPEAT PRINT.

EXECUTE.

Figure 8-3

Different value assigned to each variable

[=] Untitled - PSS Data Editor
Eile Edit Wiew Data Transform Analyze Graphs Utilities window Help

[=] B3

SRS ®| o~ D =[k] | Fe=| BlblE =
|5:var1 |
war] yard i war2 var -

1 1.00 3.00 5.00 F.an ﬂ

2 1.00 3.00 5.00 7.a0

3

4 ~|
4 [+ |\ Data View £ variableWiew / | 4] | v

® The cOMPUTE command inside the structure is repeated four times, and each
value of the stand-in variable v is associated with the corresponding value of the

variable val.

B The PRINT keyword displays the generated commands in the log item in the

Viewer.
Figure 8-4
Commands generated by DO REPEAT displayed in the log
% Outputl - SPSS Yiewer _ O] =]
File Edit Miew Insert Format Anakvze Graphs Ukilities Window Help
()37 | B | @=r] 2| & ¢
«|»] +|-| @O ==
=& Output
(] Lag
Z4 +COMPUTE wvarl=1
4 25 +COMPUTE vari=3
26 +COMPUTE id=5
7 +COMPUTE vari=7
< | | 2
|—'.r |SPSS Processor is ready s

147

Conditional Processing, Looping, and Repeating

ALL Keyword and Error Handling

You can use the keyword ALL to set the stand-in variable to all variables in the active
dataset; however, since not all variables are created equal, actions that are valid for
some variables may not be valid for others, resulting in errors. For example, some
functions are valid only for numeric variables, and other functions are valid only for
string variables.

You can suppress the display of error messages with the command SET ERRORS =
NONE, which can be useful if you know your command syntax will create a certain
number of harmless error conditions for which the error messages are mostly noise.
This does not, however, tell the program to ignore error conditions; it merely prevents
error messages from being displayed in the output. This distinction is important for
command syntax run via an INCLUDE command, which will terminate on the first error
encountered regardless of the setting for displaying error messages.

Vectors

Vectors are a convenient way to sequentially refer to consecutive variables in the active
dataset. For example, if age, sex, and salary are three consecutive numeric variables
in the data file, we can define a vector called VectorVar for those three variables. We
can then refer to these three variables as VecrorVar(1), VectorVar(2), and VectorVar(3).
This is often used in LOOP structures but can also be used without a LOOP.

Example

You can use the MAX function to find the highest value among a specified set of
variables. But what if you also want to know which variable has that value—and if
more than one variable has that value, how many variables have that value? Using
VECTOR and LOOP, you can get the information you want.

*vectors.sps.

create some sample data.
DATA LIST FREE
/FirstVar SecondVar ThirdvVar FourthvVar Fifthvar.
BEGIN DATA
12345
10 9 8 7 6
14 4 4 2
END DATA.

real job starts here.

148

Chapter 8

COMPUTE MaxValue=MAX (FirstVar TO Fifthvar).
COMPUTE MaxCount=0.

VECTOR VectorVar=FirstVar TO Fifthvar.
LOOP #cnt=5 to 1 BY -1.

- DO IF MaxValue=VectorVar (#cnt) .

- COMPUTE MaxVar=#cnt.

- COMPUTE MaxCount=MaxCount+1.

- END IF.

END LOOP.

EXECUTE.

m For each case, the MAX function in the first COMPUTE command sets the variable
MaxValue to the maximum value within the inclusive range of variables from
FirstVar to FifthVar. In this example, that happens to be five variables.

B The second COMPUTE command initializes the variable MaxCount to 0. This is the
variable that will contain the count of variables with the maximum value.

B The VECTOR command defines a vector in which VectorVar(1) = FirstVar,
VectorVar(2) = the next variable in the file order, ..., VectorVar(5) = FifthVar. Note:
Unlike some other programming languages, vectors in SPSS start at 1, not 0.

B The LoOP structure defines a loop that will be repeated five times, decreasing
the value of the temporary variable #cnt by 1 for each loop. On the first loop,
VectorVar(#cnt) equals VectorVar(5), which equals FifthVar; on the last loop, it
will equal VectorVar(1), which equals FirstVar.

m If the value of the current variable equals the value of MaxValue, then the value of
MaxVar is set to the current loop number represented by #cnt, and MaxCount is
incremented by 1.

® The final value of MaxVar represents the position of the first variable in file order
that contains the maximum value, and MaxCount is the number of variables that
have that value. (LOOP #cnt = 1 TO 5 would set MaxVar to the position of the
last variable with the maximum value.)

B The vector exists only until the next EXECUTE command or procedure that reads
the data.

149

Conditional Processing, Looping, and Repeating

Figure 8-5
Highest value across variables identified with VECTOR and LOOP
= Untitled - SPSS Data Editor H=lE
File Edit Wiew Data Transform Analyze Graphs Utilities window Help
=(R(8| B <] L] =|k] #l Fle| BlE|E 2|
|E: Firstar |
First'/ar | Secandvar | Thirdvar | Fourthvar Fithwar | Maxvalue | MaxCount | Max™ar ﬂ
1 1.00 200 3.00 4.00 5.00 5.00 1.00 A.00
2 10.00 9.00 8.00 7.00 B.00 10.00 1.00 1.00
3 1.00 4.00 4.00 4.00 2.00 4.00 3.00 2.00
4
5 -
1 [# [\ Data View £ ariable View 7 |« | »
|5PS5 Pracessor is ready [[A~

Creating Variables with VECTOR

You can use the short form of the VECTOR command to create multiple new variables.
The short form is VECTOR followed by a variable name prefix and, in parentheses, the
number of variables to create. For example:

VECTOR newvar (100) .

will create 100 new variables, named newvarl, newvar2, ..., newvarl00.

Disappearing Vectors

Vectors have a short lifespan; a vector lasts only until the next command that reads
the data, such as a statistical procedure or the EXECUTE command. This can lead to
problems under some circumstances, particularly when you are testing and debugging
a command file. When you are creating and debugging long, complex command
syntax jobs, it is often useful to insert EXECUTE commands at various stages to check
intermediate results. Unfortunately, this kills any defined vectors that might be needed
for subsequent commands, making it necessary to redefine the vector(s). However,
redefining the vectors sometimes requires special consideration.

* vectors_lifespan.sps.

GET FILE='c:\examples\data\employee data.sav'.
VECTOR vec (5) .
LOOP #cnt=1 TO 5.

150

Chapter 8

- COMPUTE vec (#cnt)=UNIFORM (1) .
END LOOP.
EXECUTE.

*Vector vec no longer exists; so this will cause an error.
LOOP #cnt=1 TO 5.

- COMPUTE vec (#cnt)=vec (#cnt) *10.

END LOOP.

*This also causes error because variables vecl - vec5 now exist.
VECTOR vec (5).

LOOP #cnt=1 TO 5.

- COMPUTE vec (#cnt)=vec (#cnt) *10.

END LOOP.

* This redefines vector without error.
VECTOR wvec=vecl TO vech.

LOOP #cnt=1 TO 5.

- COMPUTE vec (#cnt)=vec (#cnt) *10.

END LOOP.

EXECUTE.

B The first VECTOR command uses the short form of the command to create five
new variables as well as a vector named vec containing those five variable names:
vecl to vec5.

B The L.oOP assigns a random number to each variable of the vector.

B EXECUTE completes the process of assigning the random numbers to the new
variables (transformation commands like COMPUTE aren’t run until the next
command that reads the data). Under normal circumstances, this may not be
necessary at this point. However, you might do this when debugging a job to
make sure that the correct values are assigned. At this point, the five variables
defined by the VECTOR command exist in the active dataset, but the vector that
defined them is gone.

B Since the vector vec no longer exists, the attempt to use the vector in the subsequent
LooP will cause an error.

B Attempting to redefine the vector in the same way it was originally defined will
also cause an error, since the short form will attempt to create new variables using
the names of existing variables.

B VECTOR vec=vecl to vec5 redefines the vector to contain the same series
of variable names as before without generating any errors, because this form of
the command defines a vector that consists of a range of contiguous variables
that already exist in the active dataset.

151

Conditional Processing, Looping, and Repeating

Loop Structures

The LOOP-END LOOP structure performs repeated transformations specified by the
commands within the loop until it reaches a specified cutoff. The cutoff can be
determined in a number of ways:

*loopl.sps.

*create sample data, 4 vars = 0.

DATA LIST FREE /varl var2 var3 var4d var5.
BEGIN DATA

00000

END DATA.

Loops start here.

*Loop that repeats until MXLOOPS value reached.
SET MXLOOPS=10.

LOOP.

- COMPUTE varl=varl+l.

END LOOP.

*Loop that repeats 9 times, based on indexing clause.
LOOP #I = 1 to 9.

- COMPUTE var2=var2+1.

END LOOP.

*Loop while condition not encountered.
LOOP IF (var3 < 8).

- COMPUTE var3=var3+1.

END LOOP.

*Loop until condition encountered.
LOOP.

- COMPUTE vard=vard+1.

END LOOP IF (vard >= 7).

*Loop until BREAK condition.

LOOP.

- DO IF (var5 < 6).

- COMPUTE var5=var5+1.

- ELSE.

- BREAK.

- END TF.

END LOOP.

EXECUTE.

B An unconditional loop with no indexing clause will repeat until it reaches the value
specified on the SET MXL0OOPS command. The default value is 40.

B LOOP #I=1 to 9 specifies an indexing clause that will repeat the loop nine
times, incrementing the value of #/ by 1 for each loop. LOOP #tempvar=1 to
10 BY 2 would repeat five times, incrementing the value of #fempvar by 2 for
each loop.

152

Chapter 8

B LOOP IF continues as long as the specified condition is not encountered. This
corresponds to the programming concept of “do while.”

B END LOOP IF continues until the specified condition is encountered. This
corresponds to the programming concept of “do until.”

B A BREAK command in a loop ends the loop. Since BREAK is unconditional, it

is typically used only inside of conditional structures in the loop, such as DO
IF-END IF.

Indexing Clauses

The indexing clause limits the number of iterations for a loop by specifying the
number of times the program should execute commands within the loop structure. The
indexing clause is specified on the LOOP command and includes an indexing variable
followed by initial and terminal values.

The indexing variable can do far more than simply define the number of iterations.
The current value of the indexing variable can be used in transformations and
conditional statements within the loop structure. So it is often useful to define indexing
clauses that:

m Use the BY keyword to increment the value of the indexing variable by some value
other than the default of 1, as in: LOOP #i = 1 TO 100 BY 5.

B Define an indexing variable that decreases in value for each iteration, as in: LOOP
#j = 100 TO 1 BY -1.

Loops that use an indexing clause are not constrained by the MXLOOPS setting. An
indexing clause that defines 1,000 iterations will be iterated 1,000 times even if the
MXLOOPS setting is only 40.

The loop structure described in “Vectors” uses an indexing variable that decreases
for each iteration. The loop structure described in “Using XSAVE in a Loop to Build a
Data File” has an indexing clause that uses an arithmetic function to define the ending
value of the index. Both examples use the current value of the indexing variable in
transformations in the loop structure.

153

Conditional Processing, Looping, and Repeating

Nested Loops

You can nest loops inside of other loops. A nested loop is run for every iteration of
the parent loop. For example, a parent loop that defines 5 iterations and a nested loop
that defines 10 iterations will result in a total of 50 iterations for the nested loop (10
times for each iteration of the parent loop).

Example

Many statistical tests rely on assumptions of normal distributions and the Central
Limit Theorem, which basically states that even if the distribution of the population
is not normal, repeated random samples of a sufficiently large size will yield a
distribution of sample means that is normal.

We can use an input program and nested loops to demonstrate the validity of the
Central Limit Theorem. For this example, we’ll assume that a sample size of 100 is
“sufficiently large.”

*loop_nested.sps.
NEW FILE.
SET SEED 987987987.
INPUT PROGRAM.
- VECTOR Uniformvar (100).
- *parent loop creates cases.
- LOOP #I=1 TO 100.
- *nested loop creates values for each variable in each case.
- LOOP #J=1 to 100.
- COMPUTE UniformVar (#J)=UNIFORM(1000) .
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.
COMPUTE UniformMean=mean (UniformVarl TO UniformvVarl00) .
COMPUTE NormalVar=500+NORMAL (100) .
FREQUENCIES
VARIABLES=NormalVar UniformVarl UniformMean
/FORMAT=NOTABLE
/HISTOGRAM NORMAL
/ORDER = ANALYSIS.

m The first two commands simply create a new, empty active dataset and set the
random number seed to consistently duplicate the same results.

B INPUT PROGRAM-END INPUT PROGRAM is used to generate cases in the data file.

154

Chapter 8

The VECTOR command creates a vector called UniformVar, and it also creates 100
variables, named UniformVarl, UniformVar2, ..., UniformVar100.

The outer LOOP creates 100 cases via the END CASE command, which creates a
new case for each iteration of the loop. END CASE is part of the input program and
can be used only within an INPUT PROGRAM-END INPUT PROGRAM structure.

For each case created by the outer loop, the nested LOOP creates values for the
100 variables. For each iteration, the value of #/ increments by one, setting
UniformVar(#J) to UniformVar(1), then UniformVar(2), and so forth, which in turn
stands for UniformVarl, UniformVar2, and so forth.

The UNIFORM function assigns each variable a random value based on a uniform
distribution. This is repeated for all 100 cases, resulting in 100 cases and 100
variables, all containing random values based on a uniform distribution. So the
distribution of values within each variable and across variables within each case is
non-normal.

The MEAN function creates a variable that represents the mean value across all
variables for each case. This is essentially equivalent to the distribution of sample
means for 100 random samples, each containing 100 cases.

For comparison purposes, we use the NORMAL function to create a variable with
a normal distribution.

Finally, we create histograms to compare the distributions of the variable based
on a normal distribution (NormalVar), one of the variables based on a uniform
distribution (UniformVarl), and the variable that represents the distribution of

sample means (UniformMean).

155

Conditional Processing, Looping, and Repeating

Figure 8-6
Demonstrating the Central Limit Theorem with nested loops

NormalVar UniformVar1

UniformMean

As you can see from the histograms, the distribution of sample means represented by
UniformMean is approximately normal, despite the fact that it was generated from
samples with uniform distributions similar to UniformVarl.

Conditional Loops

You can define conditional loop processing with LOOP IF or END LOOP IF. The
main difference between the two is that, given equivalent conditions, END LOOP IF
will produce one more iteration of the loop than LOOP IF.

Example

*loop_ifl.sps.
DATA LIST FREE /X.
BEGIN DATA
12345

END DATA.

SET MXLOOPS=10.
COMPUTE Y=0.
LOOP IF (X~=3).
- COMPUTE Y=Y+1.
END LOOP.
COMPUTE Z=0.

156

Chapter 8

LOOP.

- COMPUTE Z=7Z+1.
END LOOP IF (X=3).
EXECUTE.

B LOOP IF (X~=3) does nothing when X is 3; so the value of Y is not incremented
and remains O for that case.

B END LOOP IF (X=3) williterate once when X is 3, incrementing Z by 1, yielding
a value of 1.

m For all other cases, the loop is iterated the number of times specified on SET
MXLOOPS, yielding a value of 10 for both Y and Z.

Using XSAVE in a Loop to Build a Data File

You can use XSAVE in a loop structure to build a data file, writing one case at a time to
the new data file.

Example

This example constructs a data file of casewise data from aggregated data. The
aggregated data file comes from a table that reports the number of males and females
by age. Since SPSS works best with raw (casewise) data, we need to “disaggregate”
the data, creating one case for each person and a new variable that indicates gender
for each case.

In addition to using XSAVE to build the new data file, this example also uses a
function in the indexing clause to define the ending index value.

*loop_xsave.sSps.
DATA LIST FREE
/Age Female Male.
BEGIN DATA
20 2 2
21 0 0
22 1 4
23 3 0
24 0 1
END DATA.
LOOP #cnt=1 to SUM(Female, Male).
- COMPUTE Gender = (#cnt > Female).
- XSAVE OUTFILE="c:\temp\tempdata.sav"
/KEEP Age Gender.
END LOOP.

157

Conditional Processing, Looping, and Repeating

EXECUTE.

GET FILE='c:\temp\tempdata.sav'.
COMPUTE IdVar=$CASENUM.

FORMATS Age Gender (F2.0) Idvar(N3).
EXECUTE.

B DATA LIST is used to read the aggregated, tabulated data. For example, the first
“case” (record) represents two females and two males aged 20.

B The suM function in the LOOP indexing clause defines the number of loop iterations
for each case. For example, for the first case, the function returns a value of 4; so
the loop will iterate four times.

B On the first two iterations, the value of the indexing variable #cnt is not greater
than the number of females; so the new variable Gender takes a value of O for each
of those iterations, and the values 20 and O (for Age and Gender) are saved to
the new data file for the first two cases.

B During the subsequent two iterations, the comparison #cnt > Female is true,
returning a value of 1, and the next two variables are saved to the new data file
with the values of 20 and 1.

B This process is repeated for each case in the aggregated data file. The second case
results in no loop iterations and consequently no cases in the new data file; the
third case produces five new cases, and so on.

B Since XSAVE is a transformation, we need an EXECUTE command after the loop
ends to finish the process of saving the new data file.

® The FORMATS command specifies a format of N3 for the ID variable, displaying
leading zeros for one- and two-digit values. GET FILE opens the data file that we
created, and the subsequent COMPUTE command creates a sequential ID variable
based on the system variable $CASENUM, which is the current row number in
the data file.

158

Chapter 8

Figure 8-7
Tabular source data and new “disaggregated” data file
Age Female hdale Age Gender Id+/ar
20.00 200 2.00 20 0 oot
21.00 0o .00 20 0 Qo2
22.00 1.00 4.00 20 1 003
23.00 3.00 0o 20 1 o4
24.00 a0 1.00 22 0 o5
22 1 006
22 1 oo?
22 1 008
22 1 oo9
23 0 010
23 0 o1
23 0 mz2
24 1 013

Calculations Affected by Low Default MXLOOPS Setting

A 1oop with an end point defined by a logical condition (for example, END LOOP IF
varx > 100) will loop until the defined end condition is reached or until the number
of loops specified on SET MXLOOPS is reached, whichever comes first. The default
value of MXLOOPS is only 40, which may produce undesirable results or errors that
can be hard to locate for looping structures that require a larger number of loops to
function properly.

Example

This example generates a data file with 1,000 cases, where each case contains the
number of random numbers—uniformly distributed between 0 and 1—that have to
be drawn to obtain a number less than 0.001. Under normal circumstance, you would
expect the mean value to be around 1,000 (randomly drawing numbers between 0 and
1 will result in a value of less than 0.001 roughly once every thousand numbers), but
the low default value of MXL.0OPS would give you misleading results.

* set_mxloops.sps.

SET MXLOOPS=40. /* Default value. Change to 10000 and compare.

SET SEED=02051242.

INPUT PROGRAM.

LOOP cnt=1 TO 1000. /*LOOP with indexing clause not affected by MXLOOPS.
- COMPUTE n=0.

159

Conditional Processing, Looping, and Repeating

- LOOP.

COMPUTE n=n+1.

- END LOOP IF UNIFORM(1)<.001. /*Loops limited by MXLOOPS setting.
- END CASE.

END LOOP.

END FILE.

END INPUT PROGRAM.

DESCRIPTIVES VARIABLES=n

/STATISTICS=MEAN MIN MAX .

All of the commands are syntactically valid and produce no warnings or error
messages.

SET MXLOOPS=40 simply sets the maximum number of loops to the default value.
The seed is set so that the same result occurs each time the commands are run.

The outer LOOP generates 1,000 cases. Since it uses an indexing clause (cnt=1
TO 1000), it is unconstrained by the MXLOOPS setting.

The nested LOOP is supposed to iterate until it produces a random value of less
than 0.001.

Each case includes the case number (cnt) and n, where n is the number of times we
had to draw a random number before getting a number less than 0.001. There is 1
chance in 1,000 of getting such a number.

The DESCRIPTIVES command shows that the mean value of n is only 39.2—far
below the expected mean of close to 1,000. Looking at the maximum value gives
you a hint as to why the mean is so low. The maximum is only 40, which is
remarkably close to the mean of 39.2; and if you look at the values in the Data
Editor, you can see that nearly all of the values of n are 40, because the MXL.OOPS
limit of 40 was almost always reached before a random uniform value of 0.001
was obtained.

If you change the MXL.OOPS setting to 10,000 (SET MXLOOPS=10000), however,
you get very different results. The mean is now 980.9, fairly close to the expected
mean of 1,000.

160

Chapter 8
Figure 8-8
Different results with different MXLOOPS settings
MELOOPS = 40
M Minimum | waximurm hean
f 1000 1.00 40.00 358.2100
Walid M (listwise) 1000
Lill L MXLOOPS = 10000
1.00 40.00
2.00 A0.00 M Minimum | Maximum hean
300 ol [0 1000 200 | 822300 | 880.8080
100 a000 Lvalid M listeise) 1000
5.00 40.00 cht n
5.00 40.00 1.00 309.00
7.00 40.00 2.00 2261.00
8.00 29.00 3.00 800.00
.00 40.00 4.00 259500
10.00 40.00 5.00 1850.00
5.00 281.00
7.00 24400
8.00 1064.00
9.00 386.00
10.00 1718.00

Chapter

Exporting Data and Results

You can export and save both data and results in a variety of formats for use by other
applications, including:

m Save data in SAS, Stata, Excel, and text format.

m Write data to a database.

m Export results in HTML, Word, Excel, and text format.
m Save results in XML and SPSS data file (.sav) format.

Output Management System

The Output Management System provides the ability to automatically write selected
categories of output to different output files in different formats. Formats include:

SPSS data file format (SAV). Output that would be displayed in pivot tables in the Viewer
can be written out in the form of an SPSS data file, making it possible to use output as
input for subsequent commands.

XML. Tables, text output, and even many charts can be written out in XML format.

HTML. Tables and text output can be written out in HTML format. Standard (not
interactive) charts and tree model diagrams (Classification Tree option) can be
included as image files.

Text. Tables and text output can be written out as tab-delimited or space-separated text.

The examples provided here are also described in the SPSS Help system, and they
barely scratch the surface of what is possible with the 0MS command. For a detailed
description of the 0MS command and related commands (OMSEND, OMSINFO, and
OMSLOG), see the SPSS Command Syntax Reference.

161

162

Chapter 9

Using Output as Input with OMS

Using the OMS command, you can save pivot table output to SPSS-format data files
and then use that output as input in subsequent commands or sessions. This can be
useful for many purposes. This section provides examples of two possible ways

to use output as input:

® Generate a table of group summary statistics (percentiles) not available with the
AGGREGATE command and then merge those values into the original data file.

® Draw repeated random samples with replacement from a data file, calculate
regression coefficients for each sample, save the coefficient values in a data file,
and then calculate confidence intervals for the coefficients (bootstrapping).

The command syntax files for these examples are installed in the tutorial\sample_files
folder of the SPSS installation folder.

Adding Group Percentile Values to a Data File

Using the AGGREGATE command, you can compute various group summary statistics
and then include those values in the active dataset as new variables. For example, you
could compute mean, minimum, and maximum income by job category and then
include those values in the dataset. Some summary statistics, however, are not available
with the AGGREGATE command. This example uses OMS to write a table of group
percentiles to a data file and then merges the data in that file with the original data file.
The command syntax used in this example is oms_percentiles.sps, located in the
tutorial\sample_files folder of the SPSS installation folder.
omg_percentiles.sps .,
GET
FILE='c:\Program Files\spss\Employee data.sav'.

PRESERVE.
SET TVARS NAMES TNUMBERS VALUES.

***gplit file by job category to get group percentiles.
SORT CASES BY jobcat.
SPLIT FILE LAYERED BY jobcat.

DATASET DECLARE tempdata.

OMS
/SELECT TABLES
/IF COMMANDS=['Frequencies'] SUBTYPES=['Statistics']
/DESTINATION FORMAT=SAV
OUTFILE=tempdata
/COLUMNS SEQUENCE=[L1 R2].

163

Exporting Data and Results

FREQUENCIES
VARIABLES=salary
/FORMAT=NOTABLE
/PERCENTILES= 25 50 75.

OMSEND.

***regstore previous SET settings.
RESTORE.

MATCH FILES FILE=*
/TABLE=tempdata
/rename (Varl=jobcat)
/BY jobcat
/DROP command_ TO salary Missing.
EXECUTE.

B The PRESERVE command saves your current SET command specifications.

B SET TVARS NAMES TNUMBERS VALUES specifies that variable names and data
values, not variable or value labels, should be displayed in tables. Using variable
names instead of labels is not technically necessary in this example, but it makes
the new variable names constructed from column labels somewhat easier to work
with. Using data values instead of value labels, however, is required to make this
example work properly because we will use the job category values in the two
files to merge them together.

B SORT CASES and SPLIT FILE are used to divide the data into groups by job
category (jobcat). The LAYERED keyword specifies that results for each split-file
group should be displayed in the same table rather than in separate tables.

B The oMS command will select all statistics tables from subsequent FREQUENCIES
commands and write the tables to an SPSS-format data file.

® The coLUMNS subcommand will put the first layer dimension element and the
second row dimension element in the columns.

B The FREQUENCIES command produces a statistics table that contains the 25th,
50th, and 75th percentile values for salary. Since split-file processing is on, the
table will contain separate percentile values for each job category.

164

Chapter 9

Figure 9-1
Default and pivoted statistics table

R2

Frequencies statistics table

salary
1 M Walicd 363
Mizzing]
Percerties 25 F22,500.00
a0 $26,550.00
75 $31,200.00
2 M Walicd 27
Mizzing o
Percerties 25 $30,000.00
SET Salary and statistics pivoted into columns
THUMBERS
WALLIES salary
M Percentiles
jobcat “alid Mis=ing 25 a0 7a
1 363 0 | $2250000 | $2655000 | $31,20000
2— 27 0 | §30,000.00 | $30,75000 | $31,200.00
— |3 54 0 | $91 61875 | $6050000 | 7209375

In the statistics table, the variable salary is the only layer dimension element;
s0, the L1 specification in the OMS COLUMNS subcommand will put salary in
the column dimension.

The table statistics are the second (inner) row dimension element in the table; so,
the R2 specification in the OMS COLUMNS subcommand will put the statistics in
the column dimension, nested under the variable salary.

The data values 1, 2, and 3 are used for the categories of the variable jobcat
instead of the descriptive text value labels because of the previous SET command
specifications.

OMSEND ends all active oMS commands. Without this, we could not access the data
file femp.sav in the subsequent MATCH FILES command because the file would
still be open for writing.

165

Exporting Data and Results

Figure 9-2
Data file created from pivoted table
temp.say - PSS Data Editor _ (O]
File Edit “iew [Data Transform Analpze Graphs Utibes Add-on: Window Help
Z|E|8| B || =] @ 7 Bl&(E 3@
|'I : Command_ |Frequencies
Command_ Subtype_ Lakel_ “arl |=zalary_|=salary_| salary_25| salary_ 50| salary_73 3
Walid | Missing
1 [Frequencies | Statistics Statistics 1 363 0| F225000| $265500 | $312000
2|Frequencies | Statistics Statistics 2 erd 0| F300000 | $3075000 [$312000
3 |Frequencies | Statistics Statistics 3 54 0| $5161585 | $605000 | $720935
4
2 -
<[|\ Data view £ Wariahle view J |l«] P

®m The MATCH FILES command merges the contents of the data file created from
the statistics table with the original data file. New variables from the data file
created by oMS will be added to the original data file.

FILE=* specifies the current active dataset, which is still the original data file.

TABLE='c:\temp\temp.sav' identifies the data file created by OMS as a table
lookup file. A table lookup file is a file in which data for each “case” can be
applied to multiple cases in the other data file(s). In this example, the table lookup
file contains only three cases—one for each job category.

® In the data file created by oMs, the variable that contains the job category values is
named Varl, but in the original data file, the variable is named jobcat. RENAME
(Varl=jobcat) compensates for this discrepancy in the variable names.

B BY jobcat merges the two files together by values of the variable jobcat. The
three cases in the table lookup file will be merged with every case in the original
data file with the same value for jobcat (also known as Var! in the table lookup
file).

® Since we don’t want the three table identifier variables to be included automatically
in every data file created by OMS or the two variables that contain the information
on valid and missing cases, we use the DROP subcommand to omit these from the
merged data file.

The end result is three new variables containing the 25th, 50th, and 75th percentile
salary values for each job category.

166

Chapter 9

Figure 9-3
Percentiles added to original data file

= Employee data.say - P55 Data Editor =]
File Edit “iew Data Transform Analyze Graphs Ublikes Add-on: Window Help

=|2|8| B| o] =|k| &l Fli B|E[E %2

|‘I4: educ |8
jobcat salary salbegin | jobtime prevexp | minority | salary_25| salary 50| salary_75 :'

2 1 $16 650 9,750 a8 412 0| $22800.0 | $26350.0| $31200.0 —

3 1 $17 400 $10,200 a1 340 0| $22800.0 | $26350.0| $31200.0

4 1 $25200 | §18750 65 344 0| $22800.0 | $26350.0| $31200.0

5 1| §22350| %15,000 7a 320 1| $22800.0 | $26550.0 | $31200.0

53 1| $16250| %10200 72 314 0| §22800.0 | $26550.0| $31200.0

7 1) §21750| $12450 74 318 0 $22800.0 | $265500 | $31200.0 |
4 [+]\ Data View £ Variable Wiew 7 || | P

Bootstrapping with OMS

Bootstrapping is a method for estimating population parameters by repeatedly
“resampling” the same sample—computing some test statistic on each sample and
then looking at the distribution of the test statistic over all the samples. Cases are
selected randomly, with replacement, from the original sample to create each new
sample. Typically, each new sample has the same number of cases as the original
sample—however, some cases may be randomly selected multiple times and others
not at all. In this example, we:

Use a macro to draw repeated random samples with replacement.
Run the REGRESSION command on each sample.
Use the oMs command to save the regression coefficients tables to a data file.

Produce histograms of the coefficient distributions and a table of confidence
intervals, using the data file created from the coefficient tables.

The command syntax file used in this example is oms_bootstrapping.sps, located in the
tutorial\sample_files folder of the SPSS installation folder.

167

Exporting Data and Results

OMS Commands to Create a Data File of Coefficients

Although the command syntax file oms_bootstrapping.sps may seem long and/or
complicated, the OMS commands that create the data file of sample regression
coefficients are really very short and simple:
PRESERVE.
SET TVARS NAMES.
DATASET DECLARE bootstrap_example.
OMS /DESTINATION VIEWER=NO /TAG='suppressall'.
oMs
/SELECT TABLES
/IF COMMANDS=['Regression'] SUBTYPES=['Coefficients']
/DESTINATION FORMAT=SAV OUTFILE='bootstrap_example'

/COLUMNS DIMNAMES=['Variables' 'Statistics']
/TAG="reg_coeff"'.

B The PRESERVE command saves your current SET command specifications,
and SET TVARS NAMES specifies that variable names—not labels—should be
displayed in tables. Since variable names in data files created by oMs are based on
table column labels, using variable names instead of labels in tables tends to result
in shorter, less cumbersome variable names.

B DATASET DECLARE defines a dataset name that will then be used in the
REGRESSION command.

B The first 0MS command prevents subsequent output from being displayed in the
Viewer until an OMSEND is encountered. This is not technically necessary, but if
you are drawing hundreds or thousands of samples, you probably don’t want to see
the output of the corresponding hundreds or thousands of REGRESSION commands.

B The second oMS command will select coefficients tables from subsequent
REGRESSION commands.

m All of the selected tables will be saved in a dataset named bootstrap_example. This
dataset will be available for the rest of the current session but will be deleted
automatically at the end of the session unless explicitly saved. The contents of this
dataset will be displayed in a separate Data Editor window.

® The COLUMNS subcommand specifies that both the “Variables” and ‘Statistics’
dimension elements of each table should appear in the columns. Since a regression
coefficients table is a simple two-dimensional table with ‘Variables’ in the rows
and ‘Statistics’ in the columns, if both dimensions appear in the columns, then
there will be only one row (case) in the generated data file for each table. This
is equivalent to pivoting the table in the Viewer so that both ‘Variables’ and
‘Statistics’ are displayed in the column dimension.

168

Chapter 9

Figure 9-4
Variables dimension element pivoted into column dimension

§% Dukputl - 5P55 Yiewer
File Edi Vew Irteil Pivol Fomal Andyea Grache Utiies Addene ‘Window Halz
E] output Coefficients™ _.I
ﬁ Log Unstandardzed Standardzed
E ["E;U"SS Caefiici Coefficierts
é'm Mgl E St Error Beta t Sig.
- VMB- 1 (Canstanl) | 42120813 Az =3.832 oo
% c:; salbagin 1514 046 EH 4.2 bao
‘[-.a Coed Iobiims 172297 AGITE 102 4750 L]
8 Loz . Deperdert Varatls: salary
Coeflicients®
(Constard] sabegin
Urnislandardized Urrslandardized Slardardized
- Coeffens Coefficents Coefficiens
sl B 6. Errar 1 Sig B St Errge Beta 1 E
1 12120813 | 30E2.591 -3.832 .o 1.814 | 4B BE2 a41.271
a. Dependert Varatle: salar
v &5 Pivoting Trayse
Layers
e y Hvariables
1 Colurmns H =i
e I = =
L | = £l (3 I
——— r|
] Fat

Sampling with Replacement and Regression Macro

The most complicated part of the OMS bootstrapping example has nothing to do with

the OMS command. A macro routine is used to generate the samples and run the

REGRESSION commands. Only the basic functionality of the macro is discussed here.

DEFINE regression_bootstrap

(samples=!TOKENS (1)

/depvar=!TOKENS (1)
/indvars=!CMDEND)

COMPUTE dummyvar=1.
AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES
/BREAK=dummyvar
/filesize=N.
!DO !other=1 !TO
SET SEED RANDOM.
WEIGHT OFF.
FILTER OFF.
DO IF S$casenum=1.

Isamples

- COMPUTE #samplesize=filesize.

- COMPUTE #filesize=filesize.
END IF.

169

Exporting Data and Results

DO IF (#samplesize>0 and #filesize>0).
- COMPUTE sampleWeight=rv.binom(#samplesize, 1/#filesize).
- COMPUTE #samplesize=#samplesize-sampleWeight.
- COMPUTE #filesize=#filesize-1.
ELSE.
- COMPUTE sampleWeight=0.
END IF.
WEIGHT BY sampleWeight.
FILTER BY sampleWeight.
REGRESSION
/STATISTICS COEFF
/DEPENDENT !depvar
/METHOD=ENTER !indvars.
! DOEND
! ENDDEFINE.

GET FILE='D:\Program Files\SPSS\Employee data.sav'.

regression_bootstrap
samples=100
depvar=salary
indvars=salbegin jobtime.

B A macro named regression_bootstrap is defined. It is designed to work with
arguments similar to SPSS subcommands and keywords.

m Based on the user-specified number of samples, dependent variable, and
independent variable, the macro will draw repeated random samples with
replacement and run the REGRESSION command on each sample.

B The samples are generated by randomly selecting cases with replacement and
assigning weight values based on how many times each case is selected. If a case
has a value of 1 for sampleWeight, it will be treated like one case. If it has a value
of 2, it will be treated like two cases, and so on. If a case has a value of O for
sampleWeight, it will not be included in the analysis.

B The REGRESSION command is then run on each weighted sample.
B The macro is invoked by using the macro name like a command. In this example,

we generate 100 samples from the employee data.sav file. You can substitute any
file, number of samples, and/or analysis variables.

Ending the OMS Requests

Before you can use the generated dataset, you need to end the OMS request that created
it, because the dataset remains open for writing until you end the OMS request. At that
point, the basic job of creating the dataset of sample coefficients is complete, but

we’ve added some histograms and a table that displays the 2.5th and 97.5th percentiles

170

Chapter 9

values of the bootstrapped coefficient values, which indicate the 95% confidence
intervals of the coefficients.

OMSEND.
DATASET ACTIVATE bootstrap_example.
FREQUENCIES
VARIABLES=salbegin_B salbegin_Beta jobtime_B jobtime_Beta
/FORMAT NOTABLE
/PERCENTILES= 2.5 97.5
/HISTOGRAM NORMAL.
RESTORE.

B OMSEND without any additional specifications ends all active OMS requests. In
this example, there were two: one to suppress all Viewer output and one to save
regression coefficients in a data file. If you don’t end both OMS requests, either you

won’t be able to open the data file or you won’t see any results of your subsequent
analysis.

® The job ends with a RESTORE command that restores your previous SET
specifications.

171

Exporting Data and Results

Figure 9-5
95% confidence interval (2.5th and 975th percentiles) and coefficient histograms
Statistics

salbegin_B salbegin_Beta jobtime_B jobtime_Beta

] “alid 100 100 100 100

Mizzing o u] 1] 0]

Percertiles 25 1.71305 83828 g7 69077 05271

g7 5 210343 80552 254 97741 14664

50 100 150 200 250 300

jobtime Unstandardized
Coefficients B

004 006 0.08 010 012 014 016

jobtime Standardized
Coefficients Beta

Transforming OXML with XSLT

Using the 0MS command, you can route output to OXML, which is XML that conforms
to the SPSS Output XML schema. This section provides a few basic examples of
using XSLT to transform OXML.

B These examples assume some basic understanding of XML and XSLT. If you have
not used XML or XSLT before, this is not the place to start. There are numerous
books and Internet resources that can help you get started.

172

Chapter 9

m All of the XSLT stylesheets presented here are installed in the tutorial\sample_files
folder of the SPSS installation folder.

B The SPSS Output XML schema is documented in SPSSOutputXML_schema.htm,
located in the help\vmnain folder of the SPSS installation folder.

OMS Namespace

Output XML produced by OMS contains a namespace declaration:

xmins="http://xml.spss.com/spss/oms"

In order for XSLT stylesheets to work properly with OXML, the XSLT stylesheets
must contain a similar namespace declaration that also defines a prefix that is used to
identify that namespace in the stylesheet. For example:

<xsl:stylesheet xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" xmIns:oms="http://xml.spss.com/spss/oms">

This defines “oms” as the prefix that identifies the namespace; therefore, all of the
XPath expressions that refer to OXML elements by name must use “oms:” as a prefix
to the element name references. All of the examples presented here use the “oms:”
prefix, but you could define and use a different prefix.

“Pushing” Content from an XML File

In the “push” approach, the structure and order of elements in the transformed results
are usually defined by the source XML file. In the case of OXML, the structure of the
XML mimics the nested tree structure of the Viewer outline, and we can construct a
very simple XSLT transformation to reproduce the outline structure.

This example generates the outline in HTML, but it could just as easily generate a
simple text file. The XSLT stylesheet is oms_simple_outline_example.xsl.

173

Figure 9-6
Viewer outline

i Outputl - SP55 Yiewer

Exporting Data and Results

IS[= E3

Fil= Edit “iew Data Transform lnsert Format Analvze Graphs Utilties Add-ons Window Help

ZRIsR| | 8| o] b=k @

Bl {E] Cutput

@ Log

E Freguency Table

Title

+L.5 Job satisfaction

@ Income category in thousands
Bar Chart

Title

(5] Jok satisfaction

m Income category in thousands
Page Tithe

E Freguencies

L& Stetistics

{E] Frequency Table
Title

g wireless service

Figure 9-7

Outline Pane - Microsoft Internet Explorer [H[=] [E3

File Edit “iew Favortes Toole Help

= Back « = - @ ﬁ- | @Search

ko

Address I@ ttings'l,roli\-'er'l,Desktop'l,tmpDDD1.htmlj |E‘J‘>GD

Cutput
Log
Frequencies
Maotes
Statistics
Frequency Table
Job satisfaction
Income category in thousands
Bar Chart
Job satisfaction
Income category in thousands
Log
Page Title
Log
Frequencies
Motes
Statistics
Frequency Table
ireless service
Owens PDA
Log

[

XSLT stylesheet oms_simple_outline_example.xs/

<?xml version="1.0"

encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:oms="http://xml.spss.com/spss/oms">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>Outline Pane</TITLE>
</HEAD>
<BODY>

0Output
<xsl:apply-templates/>
</BODY>
</HTML>
</xsl:template>

<xsl:template match:"oms:command|oms:heading">

version="1.0"

174

Chapter 9

<xsl:call-template name="displayoutline" />
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="oms:textBlock|oms:pageTitle|oms:pivotTable|oms:chartTitle">

<xsl:call-template name="displayoutline"/>
</xsl:template>

<!--indent based on number of ancestors:
two spaces for each ancestor-->
<xsl:template name="displayoutline">

<xsl:for-each select="ancestor::*">
<xsl:text> </xsl:text>
</xsl:for-each>
<xsl:value-of select="@text"/>
<xsl:if test="not (@text) ">
<!--no text attribute, must be page title-->
<xsl:text>Page Title</xsl:text>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

® xmins:oms="http://xml.spss.com/spss/oms" defines “oms” as the prefix that
identifies the namespace; so, all element names in XPath expressions need to
include the prefix “oms:”.

B The stylesheet consists mostly of two <template match> specifications that cover
each type of element that can appear in the outline—command, heading, textBlock,
pageTitle, pivotTable, and chartTitle.

® Both of those templates call another template that determines how far to indent
the text attribute value for the element.

m The command and heading elements can have other outline items nested under
them, so the template for those two elements also includes <xsl:apply-templates/>
to apply the template for the other outline items.

® The template that determines the outline indentation simply counts the number of
“ancestors” the element has, which indicates its nesting level, and then inserts
two spaces (is a “nonbreaking” space in HTML) before the value of the
text attribute value.

m <xslif test="not(@text)"> selects <pageTitle> elements because this is the only
specified element that doesn’t have a text attribute. This occurs wherever there is a
TITLE command in the SPSS command file. In the Viewer, it inserts a page break
for printed output and then inserts the specified page title on each subsequent
printed page. In OXML, the <pageTitle> element has no attributes; so, we use
<xsl:text> to insert the text “Page Title” as it appears in the Viewer outline.

175

Exporting Data and Results

Viewer Outline “Titles”

You may notice that there are a number of “Title” entries in the Viewer outline that
don’t appear in the generated HTML. These should not be confused with page titles.
There is no corresponding element in OXML because the actual “title” of each output
block (the text object selected in the Viewer if you the click the “Title” entry in the
Viewer outline) is exactly the same as the text of the entry directly above the “Title”
in the outline, which is contained in the text attribute of the corresponding command
or heading element in OXML.

“Pulling” Content from an XML File

In the “pull” approach, the structure and order of elements in the source XML file
may not be relevant for the transformed results. Instead, the source XML is treated
like a data repository from which selected pieces of information are extracted, and the
structure of the transformed results is defined by the XSLT stylesheet.

The “pull” approach typically uses <xsl:for-each> to select and extract information
from the XML.

Simple xsl:for-each “Pull” Example

This example uses <xsl:for-each> to “pull” selected information out of OXML output
and create customized HTML tables.

Although you can easily generate HTML output using DESTINATION
FORMAT=HTML on the OMS command, you have very little control over the HTML
generated beyond the specific object types included in the HTML file. Using OXML,
however, you can create customized tables. This example:

B Selects only frequency tables in the OXML file.

® Displays only valid (nonmissing) values.

m Displays only the “Frequency” and “Valid Percent” columns.
|

Replaces the default column labels with “Count” and “Percent”.

The XSLT stylesheet used in this example is oms_simple_frequency_tables.xsl.

Note: This stylesheet is not designed to work with frequency tables generated with
layered split-file processing.

Figure 9-8

Frequencies pivot tables in Viewer

Variahle One
Cumulative
Freguency Percert walid Percent Percent
“alid Cne 19 181 260 260
Tweor 23 287 354 644
3.00 26 248 356 100.0
Tatal 73 63.5 100.0
Missing 59.00 17 16.2
System 15 14.3
Total 32 305
Tatal 105 100.0
wvar2
Curmuilative
Freguency Percent Yalid Percent Percent
“alicd Female B3 500 500 g0.0
Iale 42 400 400 100.0
Total 105 100.0 100.0
Figure 9-9

Customized HTML frequency tables

Variable One
