Meta Analysis: fixed and random effects models
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | **************************************************************************** *** Meta-Analysis: Fixed and Random Effects Models *** Valentim R. Alferes (University of Coimbra, Portugal) *** valferes@fpce.uc.pt ** ** This syntax does a meta-analysis on a set of studies comparing two ** independent means. It produces results for both fixed and random effects ** models, using Cohen's d statistic, with or without Hedges' correction. ** ** The user has TEN MODES FOR ENTERING SUMMARY DATA (see PART 1): ** ** Mode 1 - Study No., N1, M1, SD1, N2, M2 SD2. ** Mode 2 - Study No., N1, M1, N2, M2 SD_POOL. ** Mode 3 - Study No., Direction of Effect, Difference, N1, SD1, N2, SD2. ** Mode 4 - Study No., Direction of Effect, Difference, N1, N2, SD_POOL. ** Mode 5 - Study No., DF, M1, SD1, M2 SD2. ** Mode 6 - Study No., DF, M1, M2, SD_POOL. ** Mode 7 - Study No., Direction of Effect, DF, Difference, SD1, SD2. ** Mode 8 - Study No., Direction of Effect, DF, Difference, SD_POOL. ** Mode 9 - Study No., Direction of Effect, N1, N2, T_OBS. ** Mode 10 - Study No., Direction of Effect, DF, T_OBS. ** ** There are no limits for the number of studies to be analyzed and the user ** can input data simultaneously in the ten modes or enter all the studies ** only in one mode. In the modes not used, the lines of data have to be ** cleared, but not the corresponding command lines. ** ** If the input are means, the program assumes that Group 1 is the ** experimental or focus group and Group 2 is the control or comparison ** group. ** ** If the input are differences between group means or observed Ts, they ** are registered in absolute values (DIF=|M1-M2| or T_OBS=|Tobs|) and the ** user specifies the direction of effect in a different variable (DIRECT): ** +1 (if the effect is in the expected direction: Group 1 mean greater ** than Group 2 mean) and -1 (if the effect is reversed: Group 1 mean lesser ** than Group 2 mean). ** ** When the input are degrees of freedom, the syntax asssumes equal Ns if df ** are even, and N2=N1-1 if they are odd. ** ** When the data are selected from two contrasting ANOVA treatments, the ** user can input them in modes 2 or 4 and let the pooled standard deviation ** (SD_POOL) equals the squared root of the original ANOVA MS Error. ** ** By default the measure of effect size is Hedges' correction to Cohen's d. ** If you want to use d statistic without correction, you can change the ** default in the corresponding command line. ** ** The OUTPUT is organized in nine tables: ** ** Table 1 User's data ** ** Table 2 Program imputations ** ** Table 3 Individual T Tests and observed power ** - N1, N2, degrees of freedom (DF), difference between group means (DIF), ** observed T (T_OBS), two-tailed probability (P_TWO), and one-tailed ** probability (P_ONE); ** - Alfa (ALFA), Harmonic N (N_HARM), noncentrality parameter (NCP), and ** observed power (OPOWER). ** [for algorithm, see Borenstein et al., 2001] ** ** Table 4 Measures of Effect Size and Nonoverlap ** Measures of effect size: ** - Cohen's d (D); ** [Cohen, 1988, p. 20] ** - Hedges' correction (D_H); ** [D_H = d, in Hedges & Olkin, 1985; D_H = d*, in Hunter & Schmidt, ** 1990; see Cortina & Nouri, 2000, p. 9]; ** - r point biserial (R); ** - Squared r point biserial (R2); ** - Binomial Effect Size Display (BESD_LO and BESD_UP). ** [see formulas in Rosenthal et al. 2000, pp. 8-19] ** ** Measures of nonoverlap: ** - U1 (percent of nonoverlap between the two distributions); ** - U2 (the highest percent in Group 1 that exceeds the same lowest ** percent in Group 2); ** - U3 (percentile standing = percentile of the Group 2 distribution ** corresponding to the 50th percentile of Group 1 distribution); ** [see formulas in Cohen, 1988, pp. 21-23] ** ** Table 5 - Non weighted effect size - Descriptive statistics ** - Number of studies (NSTUDIES), Cohen's d (D), and Hedges' correction ** (D_H) (minimun, maximun, mean, sem, and sd). ** ** Table 6 Fixed effects model ** - Weighted average effect size (EF_SIZE), VARIANCE, and standard error ** (SE); ** - z Test (z), two-tailed probability (P_TWO), and one-tailed probability ** (P_ONE); ** - Confidence level (CL), and lower (CI_LOWER) and upper (CI_UPPER) ** interval confidence limits. ** [see formulas in Shadish & Haddock, 1994, pp. 265-268] ** ** Table 7 - Chi-square Test for homogeneity of effect size: ** - Q statistic, degrees of freedom (K), and two-tailed probability ** (P_CHISQ) ** [see formula in Shadish & Haddock, 1994, p. 266] ** ** Table 8 - Random Variance Component ** - V0 [see formula in Lipsey & Wilson, 2001, p. 134]. ** ** Table 9 Random effects model ** - Weighted average effect size (EF_SIZE), VARIANCE, and standard error ** (SE); ** - z Test (z), two-tailed probability (P_TWO), and one-tailed probability ** (P_ONE); ** - Confidence level (CL), and lower (CI_LOWER) and upper (CI_UPPER) ** interval confidence limits. ** [see formulas and procedures in Lipsey & Wilson, 2001, pp. 134-135] ** ** For calculating observed power of individual studies, the syntax assumes ** alfa = 0.05. For calculating the confidence interval of weighted effect ** sizes, the syntax assumes confidence level = 95%. If you want, you can ** modify these values in the corresponding lines (see PART 2). ** ** After running the syntax, the user can have access to Tables 2, 3 and 4 ** in SPSS active file, so that he may handle the data for other meta- ** analytic procedures based on different effect size measures or exact ** probabilities (see other syntaxes in this site). ** ** In the example, we have 20 studies and we have used the ten input data ** modes. **************************************************************************** *** BEGIN OF THE SYNTAX. ** PART 1: ENTERING SUMMARY DATA. * Mode 1: Enter, row by row, Study No., N1, M1, SD1, N2, M2 SD2. DATA LIST LIST /Study(F8.0) N1(F8.0) M1(F8.2) SD1(F8.2) N2(F8.0) M2(F8.2) SD2(F8.2). BEGIN DATA 1 17 7.46 1.98 16 6.23 2.45 2 15 5.34 2.14 15 4.47 2.51 END DATA. SAVE OUTFILE=DATA1. * Mode 2: Enter, row by row, Study No., N1, M1, N2, M2 SD_POOL. DATA LIST LIST /Study(F8.0) N1(F8.0) M1(F8.2) N2(F8.0) M2(F8.2) SD_POOL(F8.2). BEGIN DATA 3 14 7.32 16 8.23 2.67 4 23 6.20 27 4.47 2.21 END DATA. SAVE OUTFILE=DATA2. * Mode 3: Enter, row by row, Study No., Direction of Effect, Difference, * N1, SD1, N2, SD2. DATA LIST LIST /Study(F8.0) Direct(F8.0) DIF(F8.2) N1(F8.0) SD1(F8.2) N2(F8.0) SD2(F8.2). BEGIN DATA 5 +1 1.04 10 3.04 11 2.98 6 -1 2.25 12 2.63 12 2.21 END DATA. SAVE OUTFILE=DATA3. * Mode 4: Enter, row by row, Study No., Direction of Effect, Difference, N1, * N2, SD_POOL. DATA LIST LIST /Study(F8.0) Direct(F8.0) DIF(F8.2) N1(F8.0) N2(F8.0) SD_POOL(F8.2). BEGIN DATA 7 -1 1.32 34 33 2.44 8 +1 1.25 20 20 3.09 END DATA. SAVE OUTFILE=DATA4. * Mode 5: Enter, row by row, Study No., DF, M1, SD1, M2 SD2. DATA LIST LIST /Study(F8.0) DF(F8.0) M1(F8.2) SD1(F8.2) M2(F8.2) SD2(F8.2). BEGIN DATA 9 34 7.46 1.69 6.33 2.98 10 33 5.34 2.94 5.46 2.31 END DATA. SAVE OUTFILE=DATA5. * Mode 6: Enter, row by row, Study No., DF, M1, M2, SD_POOL. DATA LIST LIST /Study(F8.0) DF(F8.0) M1(F8.2) M2(F8.2) SD_POOL(F8.2). BEGIN DATA 11 27 7.76 5.29 2.77 12 28 6.30 4.21 2.41 END DATA. SAVE OUTFILE=DATA6. * Mode 7: Enter, row by row, Study No., Direction of Effect, DF, Difference, * SD1, SD2. DATA LIST LIST /Study(F8.0) Direct(F8.0) DF(F8.0) DIF(F8.2) SD1(F8.2) SD2(F8.2). BEGIN DATA 13 +1 40 3.07 1.77 2.87 14 -1 37 2.11 2.62 2.21 END DATA. SAVE OUTFILE=DATA7. * Mode 8: Enter, row by row, Study No., Direction of Effect, DF, Difference, * SD_POOL. DATA LIST LIST /Study(F8.0) Direct(F8.0) DF(F8.0) DIF(F8.2) SD_POOL(F8.2). BEGIN DATA 15 -1 23 2.22 1.88 16 +1 34 3.17 1.94 END DATA. SAVE OUTFILE=DATA8. * Mode 9: Enter, row by row, Study No., Direction of Effect, N1, N2, T_OBS. DATA LIST LIST /Study(F8.0) Direct(F8.0) N1(F8.0) N2(F8.0) T_OBS(F8.2). BEGIN DATA 17 +1 20 20 4.74 18 -1 14 15 3.17 END DATA. SAVE OUTFILE=DATA9. * Mode 10: Enter, row by row, Study No., Direction of Effect, DF, T_OBS. DATA LIST LIST /Study(F8.0) Direct(F8.0) DF(F8.0) T_OBS(F8.2). BEGIN DATA 19 +1 54 5.46 20 -1 49 2.27 END DATA. SAVE OUTFILE=DATA10. GET FILE=DATA1. ADD FILES/FILE=*/FILE=DATA2/FILE=DATA3/FILE=DATA4/FILE=DATA5 /FILE=DATA6/FILE=DATA7/FILE=DATA8/FILE=DATA9/FILE=DATA10. EXECUTE. ** PART 2: SETTING ALFA AND CONFIDENCE LEVEL, CHOOSING EFFECT SIZE MEASURE ** AND RUNNIG META-ANALYSIS. * Enter alfa for computing observed power (by default, AFFA = 0.05). COMPUTE ALFA = 0.05. EXECUTE. SORT CASES BY STUDY(A). IF (M1>=M2) DIRECT=1. IF (M1<M2) DIRECT=-1. SUMMARIZE/TABLES=STUDY DIRECT N1 N2 DF M1 M2 DIF SD1 SD2 SD_POOL T_OBS /FORMAT=VALIDLIST NOCASENUM TOTAL/TITLE="Table 1 - User's data"/CELLS=NONE. COMPUTE MOD_DF=MOD(DF,2). IF (MOD_DF=0) N1=(DF/2)+1. IF (MOD_DF=0) N2=N1. IF (MOD_DF=1) N1=((DF+1)/2)+1. IF (MOD_DF=1) N2=N1-1. COMPUTE DF=(N1+N2)-2. IF (M1<=0 OR M1>0) DIF=ABS(M1-M2). COMPUTE SDX=(((N1-1)*(SD1**2))+((N2-1)*(SD2**2)))/(N1+N2-2). IF (SD_POOL<=0 OR SD_POOL>0) SDX=SD_POOL**2. IF (SDX<=0 OR SDX>0) T_OBS=DIF/SQR(SDX*((1/N1)+(1/N2))). COMPUTE SD_POOL=SQR(SDX). COMPUTE T_OBS=DIRECT*T_OBS. COMPUTE DIF=DIRECT*DIF. COMPUTE TABS=ABS(T_OBS). COMPUTE P_TWO=(1-CDF.T(TABS,DF))*2. COMPUTE P_ONE=1-CDF.T(TABS,DF). COMPUTE D=T_OBS*SQR((1/N1)+(1/N2)). COMPUTE N_HARM=(2*N1*N2)/(N1+N2). COMPUTE NCP=ABS((D*SQR(N_HARM))/SQR(2)). COMPUTE T_ALPHA=IDF.T(1-ALFA/2,DF). COMPUTE POWER1=1-NCDF.T(T_ALPHA,DF,NCP). COMPUTE POWER2=1-NCDF.T(T_ALPHA,DF,-NCP). COMPUTE OPOWER=POWER1+POWER2. COMPUTE R=T_OBS/SQR((T_OBS**2)+DF). COMPUTE R2=R**2. COMPUTE D_H=D*(1-(3/(4*(N1+N2)-9))). COMPUTE BESD_LO=.50-(R/2). COMPUTE BESD_UP=.50+(R/2). COMPUTE U3=CDF.NORMAL(D,0,1)*100. COMPUTE U2=CDF.NORMAL((D/2),0,1)*100. COMPUTE U2X=CDF.NORMAL(((ABS(D))/2),0,1). COMPUTE U1=(2*U2X-1)/U2X*100. FORMATS P_TWO P_ONE ALFA N_HARM NCP OPOWER D D_H R R2 BESD_LO BESD_UP(F8.4) U1 U2 U3(F8.1). SUMMARIZE/TABLES=STUDY DIRECT N1 N2 DF M1 M2 DIF SD1 SD2 SD_POOL T_OBS /FORMAT=VALIDLIST NOCASENUM TOTAL/TITLE="Table 2 Program imputations" /CELLS=NONE. SUMMARIZE/TABLES=STUDY DIRECT DIF DF T_OBS P_TWO P_ONE ALFA N_HARM NCP OPOWER/FORMAT=VALIDLIST NOCASENUM TOTAL /TITLE="TABLE 3 Individual T Tests and observed power"/CELLS=NONE. SUMMARIZE/TABLES=STUDY DIRECT D D_H R R2 BESD_LO BESD_UP U1 U2 U3 /FORMAT=VALIDLIST NOCASENUM TOTAL /TITLE="Table 4 - Measures of effect size and nonoverlap"/CELLS=NONE. SUMMARIZE/TABLES=D D_H/FORMAT=NOLIST TOTAL/TITLE="Table 5 - Non weighted " +"effect size Descriptive statistics: Cohens d and Hedges' correction" /CELLS=COUNT MIN MAX MEAN SEMEAN STDDEV. SAVE OUTFILE=META_DATA. * Choose the effect size measure (Cohen's d = 1; Hedges' correction = 2) * (by default, ES = 2). COMPUTE ES = 2. IF (ES=1) D=D. IF (ES=2) D=D_H. EXECUTE. COMPUTE V=((N1+N2)/(N1*N2))+((D**2)/(2*(N1+N2))). COMPUTE W=1/V. COMPUTE WD=W*D. COMPUTE WD2=W*D**2. COMPUTE W2=W**2. COMPUTE X=1. EXECUTE. SAVE OUTFILE=FOUTX. AGGREGATE/OUTFILE=*/BREAK=X/SUM_W=SUM(W)/SUM_WD=SUM(WD) /SUM_WD2=SUM(WD2)/SUM_W2=SUM(W2)/NSTUDIES=N. COMPUTE K=NSTUDIES-1. COMPUTE EF_SIZE=SUM_WD/SUM_W. COMPUTE VARIANCE=1/SUM_W. COMPUTE SE=SQR(1/SUM_W). COMPUTE Z=ABS(EF_SIZE)/SE. COMPUTE P_TWO=(1-CDF.NORMAL(Z,0,1))*2 . COMPUTE P_ONE=1-CDF.NORMAL(Z,0,1). EXECUTE. * Enter confidence level for interval confidence (by default, CL=95%). COMPUTE CL = 95. COMPUTE ZCL=IDF.NORMAL((1-(((100-CL)/100)/2)),0,1). COMPUTE CI_LOWER=EF_SIZE-ZCL*SE. COMPUTE CI_UPPER=EF_SIZE+ZCL*SE. COMPUTE Q=SUM_WD2-SUM_WD**2/SUM_W. COMPUTE P_CHISQ = 1-CDF.CHISQ(Q,K). COMPUTE V0 = (Q-K)/(SUM_W-SUM_W2/SUM_W) . EXECUTE. SAVE OUTFILE=FOUTY/KEEP=V0 X. FORMATS ALL(F8.4) VARIANCE SE(F8.5) NSTUDIES CL K(F8.0). SUMMARIZE/TABLES=NSTUDIES EF_SIZE VARIANCE SE Z P_TWO P_ONE CL CI_LOWER CI_UPPER/FORMAT=LIST NOCASENUM TOTAL /TITLE='Table 6 Fixed effects model:' +' Weighted average effect size, z test, and confidence interval' /CELLS=NONE. SUMMARIZE/TABLES=Q K P_CHISQ/FORMAT=LIST NOCASENUM TOTAL/TITLE= 'Table 7 - Chi-square test for homogeneity of effect size'/cells=none. GET FILE=FOUTX. MATCH FILES /FILE=*/TABLE=FOUTY/BY X. EXECUTE. COMPUTE V=V+V0. COMPUTE W=1/V. COMPUTE WD=W*D. COMPUTE WD2=W*D**2. COMPUTE W2=W**2. EXECUTE. FORMATS V0(F8.3). SUMMARIZE/TABLES=v0/FORMAT=NOLIST TOTAL/TITLE='Table 8 - Random variance' +' component'/CELLS=MEAN. AGGREGATE/OUTFILE=*/BREAK=X/SUM_W=SUM(W)/SUM_WD=SUM(WD) /SUM_WD2=SUM(WD2)/SUM_W2=SUM(W2)/NSTUDIES=N. COMPUTE K=NSTUDIES-1. COMPUTE EF_SIZE=SUM_WD / SUM_W. COMPUTE VARIANCE=1/SUM_W. COMPUTE SE=SQR(1/SUM_W). COMPUTE Z=ABS(EF_SIZE)/SE. COMPUTE P_TWO=(1-CDF.NORMAL(Z,0,1))*2 . COMPUTE P_ONE=1-CDF.NORMAL(Z,0,1). EXECUTE. * Enter confidence level for interval confidence (by default, CL=95%). COMPUTE CL = 95. COMPUTE ZCL=IDF.NORMAL((1-(((100-CL)/100)/2)),0,1). COMPUTE CI_LOWER=EF_SIZE-ZCL*SE. COMPUTE CI_UPPER=EF_SIZE+ZCL*SE. FORMATS ALL(F8.4) VARIANCE SE(F8.5) NSTUDIES CL K(F8.0). SUMMARIZE/TABLES=NSTUDIES EF_SIZE VARIANCE SE Z P_TWO P_ONE CL CI_LOWER CI_UPPER/FORMAT=LIST NOCASENUM TOTAL /TITLE='Table 9 Random effects ' +'model: Weighted average effect size, z test, and confidence interval' /CELLS=NONE. GET FILE=META_DATA/KEEP=STUDY DIRECT N1 N2 DF M1 M2 DIF SD1 SD2 SD_POOL T_OBS P_TWO P_ONE ALFA N_HARM NCP OPOWER D D_H R R2 BESD_LO BESD_UP U1 U2 U3. *** END OF THE SYNTAX. **************************************************************************** ** Note ** ** ** Beginning in line: ** ** COMPUTE W=1/V. ** ** with effect sizes (D) and variances (V) from original sources, this ** syntax was tested with data reported in Lipsey and Wilson (2001, p. 130, ** Table 7.1) and Shadish and Haddock (1994, p. 267, Table 18.2). ** ** Imputations procedures and Individual T Tests were tested in SPSS, ** comparing the results with outputs obtained from raw data examples. ** ** Power calculations are the same given by SamplePower (Borenstein et al., ** 2001) and measures of effect size and nonoverlap were tested with ** tabulated values and examples given by Cohen (1988) and Rosenthal et al. ** (2000). ** ** Feel free to use and modify this syntax as you wish. In case you want to ** refer it, the proper form is: ** ** Alferes, V. R. (2003). Meta-analysis: Fixed and random effects models ** [SPSS Syntax File]. Retrieved [Date], from [URL] **************************************************************************** ** References ** ** ** Borenstein, M., Rothstein, H., & Cohen, J. (2001). SamplePower 2.0 ** [Computer Manual]. Chicago: SPSS Inc. ** Cohen, J. (1988). Statistical power analysis for the behavioral ** sciences (2nd ed.). Hillsdale, NJ: Lawrence Erbaum. ** Cortina, J. M., & Nouri, H. (2000). Effect sizes for ANOVA designs. ** Thousand Oaks, CA: Sage. ** Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. ** Orlando, FL: Academic Press. ** Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: ** Correcting error and bias in research findings. Newbury Park, CA: ** Sage. ** Lipsey, M. W., & Wilson, D. B. (2001). Pratical meta-analysis. Thousand ** Oaks, CA: Sage. ** Rosenthal, R., Rosnow, R. L, & Rubin, D. B. (2000). Contrasts and ** effect sizes in behavioral research: A correlational approach. ** Cambridge, UK: Cambridge University Press. ** Shadish, W. R., & Haddock, C. K. (1994). Combining estimates of effect ** size. In H. Cooper and L. V. Hedges (Eds.), The handbook of research ** synthesis (pp. 261-281). New York: Russell Sage Foundation. ***************************************************************************. |
Related pages
...
Navigate from here